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Adaptique: Multi-objective and Context-aware Online Adaptation
of Selection Techniques in Virtual Reality

Anonymous Author(s)

Figure 1: Adaptique switches the selection technique based on environmental and user-based factors, and considers multiple
objectives for VR selection. In this example, the user attempts to select the light switch on the far wall to light up the room. (a)
Since the light switch is small and far, the user has difficulty selecting it with normal RayCasting. (b) Adaptique continuously
senses the environment and user state to find the most optimal selection technique for current use. (c) Adaptique switches
the selection technique to StickyRay, snapping the ray to the nearest target to assist the user in accurately and comfortably
selecting the light switch.

ABSTRACT
Selection is a fundamental task that is challenging in virtual reality

due to issues such as distant and small targets, occlusion, and target-

dense environments. Previous research has tackled these challenges

through various selection techniques, but complicates selection and

can be seen as tedious outside of their designed use case. We present

Adaptique, an adaptive model that infers and switches to the most

optimal selection technique based on user and environmental infor-

mation. Adaptique considers contextual information such as target

size, distance, occlusion, and user posture combined with four ob-

jectives: speed, accuracy, comfort, and familiarity which are based

on fundamental predictive models of human movement for tech-

nique selection. This enables Adaptique to select simple techniques

when they are sufficiently efficient and more advanced techniques

when necessary. We show that Adaptique is more preferred and

performant than single techniques in a user study, and demonstrate

Adaptique’s versatility in an application.
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1 INTRODUCTION
Selection tasks in extended reality (XR) can be challenging in dy-

namic environments due to factors such as small and distant targets,

and occlusion [2]. Furthermore, XR environments often change

rapidly, with virtual contents changing and users moving or alter-

ing their attention within the 3D space [38]. For example, a user

might be selecting buttons on a large panel, which requires only

a simple and fast technique. Then, they might shift to examining

components within a complex 3D assembly file they just opened.

Since these components are small and cluttered, the user needs

a precise selection tool designed to target fine details in a dense

environment. Following that, they might interact with an IoT light

switch on a distant wall to view a real-world object clearly. Because

the switch is located far away from their reach, they need a tool

1
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that can handle distant objects effectively. These scenarios repre-

sent three distinct environments, making it difficult to use a single

selection tool for all tasks.

Previous work has addressed some of the selection challenges in

XR and 3D user interfaces, such as selecting small, distant, occluded

objects or selecting in a dense environment [55, 65]. However, these

techniques are often tailored to specific scenarios and become overly

complicated when applied outside of their intended context. Manu-

ally switching between techniques adds extra workload to the user,

who must identify the current context and needs and then perform

interaction to switch the technique.

In this research, we propose Adaptique, a virtual reality (VR)

system that adaptively selects the most suitable selection technique

(Figure 1). Inspired by previous work on context-aware adaptation

of interfaces in the layout of virtual contents [9, 39, 47], we frame

our problem as a multi-objective online optimization problem. We

based our adaptation on environmental factors such as the object’s

position, size, and relationship to other objects, as well as user-based

factors such as the user’s current posture and familiarity with the

techniques (Figure 1b). We identified four objectives, including

Speed, Accuracy, Comfort, and Familiarity. We formalized these ob-

jectives with established performance metrics that could transform

those factors into our criteria. Adaptique will then make a deci-

sion in real time and switch the technique when the performance

reaches the predefined threshold of improvement (Figure 1c).

In our current implementation, we included normal RayCasting,

StickyRay [22, 40], and RayCursor [3] to effectively switch between

normal selection, small targets, dense environments, and target

occlusion. We demonstrated Adaptique’s utility and applicability

in an indoor application where Adaptique smoothly switches the

selection tool to a more suitable one when the content of the user’s

interest changes and the task becomes hard with the current tool.

Furthermore, our VR study highlighted the importance of adap-

tivity, as using the same technique in different scenarios can lead

to difficulty and negatively impact the user experience. We show

how Adaptique outperformed the use of singular techniques in

selection time, movement, and error rate, and was also preferred

by the majority of study participants. In sum, the contributions of

this work are:

• Adaptique, a real-time multi-objective adaptive optimiza-

tion system for selection technique in XR.

• An application with various selection tasks that showcases

the versatility and utility of Adaptique.

• The results of a user study demonstrate the benefits of using

Adaptique in various environments.

2 RELATEDWORK
Adaptique builds on common selection challenges in XR, the tech-

niques designed to address these challenges, human selection per-

formance models, and context-aware adaptive systems.

2.1 XR Selection Techniques
RayCasting is one of the common selection techniques in the XR

due to its ability to select targets beyond the user’s reach by point-

ing with a ray extending from the user’s hand or controller [35, 44].

However, selecting a small or distant object requires higher accu-

racy because of its small visible area and the tremor of the hand

amplified along the ray. In addition, in dense environments, tar-

gets may be occluded, resulting in the requirement of physically

changing the point of view to be able to see the target. Dense envi-

ronments also increase the chance of erroneous selection due to the

proximity of targets to one another. To address these challenges,

various interaction techniques have been proposed.

To enhance the selection of small targets in the 3D space, re-

searchers have proposed techniques that dynamically enlarge the

size of objects to expand the interactable area [1], progressive re-

finement techniques that require steps following the initial action to

improve precision [23, 32, 33, 45], snapping mechanisms to decrease

the precision requirement by enlarging the effective size [20, 40, 55].

Other works have tackled the problem of selection in dense envi-

ronments. In addition to the previously mentioned progressive

refinement techniques that also help disambiguation in dense envi-

ronments, some approaches use extra degrees of freedom to specify

the depth of the target. For example, Depth Ray [23], RayCursor [3],

ClockRay [61], and Alpha Cursor [65] utilize an extra cursor along

the ray that is controlled by the forward-backward movement of the

hand, swiping on the trackpad, or wrist rotation. MultiFingerBub-

ble [13] uses multiple rays of individual fingers to select between

nearby objects by flexing the corresponding finger. Other methods

use visual aids, such as mirrors, that display occluded objects from

different perspectives and make them visible [36].

Although these techniques make the selection task easier in

their designed cases, they are usually too complicated and unnec-

essary when applied outside of their intended context. In contrast,

Adaptique adapts the interaction technique to the current context,

making selection easier in any scenario that users might encounter

in dynamic XR applications.

2.2 Human Performance Models on Selection
Tasks

Researchers have developed various models to evaluate and predict

user performance of pointing selection tasks in virtual environ-

ment, focusing on speed, accuracy, and comfort. We evaluate these

factors using Fitts’ Law [18] for speed, the end-point distribution

model [64] for accuracy, and the Consumed Endurance model [28]

for comfort.

In Fitts’ law, the predicted time needed to select a target based

on the target’s distance and width is formulated as 𝑀𝑇 = 𝑎 + 𝑏 ·
𝑙𝑜𝑔2 ( 2𝐴𝑊 ) [18]. Here,𝐴 represents the amplitude of movement to the

target,𝑊 is the width of the target along the axis of motion, and the

constants 𝑎 and𝑏 are determined by empirical linear regression. The

logarithmic term is the index of difficulty (𝐼𝐷) of the task. Though

originally applied to 1D selection tasks, it has shown good appli-

cability in tasks of higher dimension space. For example, Shannon

formulation defined the movement time as𝑀𝑇 = 𝑎+𝑏 ·𝑙𝑜𝑔2 ( 𝐴𝑊 +1).
To capture the target geometry, W’-model adjusts the definition of

1D width as the cross-section width along the direction of cursor

movement [41]. We adopted this model due to its simplicity, its

ability to deal with non-rectangle geometries, and its good fitting

result in 2D tasks. In the virtual environment, the Shannon formu-

lation has been used in raycasting tasks because raycasting does

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Adaptique CHI ’25, April 26-May 1, 2025, Yokohama, Japan

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

not require z-axis movements [20] with two rotation axes as its

dominant degree of freedom (DoF) [2]. The target width and ampli-

tude are represented in angular size form to consider the depth [64].

As for the interaction that requires a higher degree of freedom in

translation, such as virtual hand pointing, the 3D Fitts’ Law is used

more frequently [12, 51].

The endpoint distribution model describes selection behaviors by

analyzing the spatial distribution of endpoints during pointing tasks.

In XR, models such as the EDModel explore how different factors

such as target size, target shape, movement amplitude, and target

depth affect the distribution characteristic based on a bivariate

Gaussian distribution [64]. Combined with Bi’s method [6], this

model can also estimate the selection accuracy by integrating the

probability density function for the target region into its control

space.

In addition to time and accuracy, user performance is influenced

by physical factors such as fatigue and overall comfort. For example,

the gorilla arm effect occurs when people feel fatigued in their arms

and shoulders after performing mid-air interactions for a long time.

Models such as Consumed Endurance (CE) [28] and RULA [43]

characterize this ergonomic factor from a biomechanics perspective,

relying on physical data such as user postures, arm weights, muscle

endurance, and other relevant information. In our work, we utilized

these models to evaluate the most suitable selection techniques to

the context in terms of speed, accuracy, and comfort.

2.3 Adaptive Systems for Interaction
Techniques

Recent studies have increasingly highlighted the importance of

context-aware adaptive systems in XR interactions [9, 10, 16, 17,

21, 25, 29, 39, 56], especially in mixed reality environments due to

their connection to the dynamic physical world. These works have

for example adapted the layout of virtual content for various kinds

of factors, such as the relationship between virtual and physical

objects [9, 56], ergonomics [16, 29], physical space [10], or user’s in-

tention [21]. These systems are typically implemented through com-

binatorial optimization, rule-based systems, or data-driven methods

such as reinforcement learning. Most XR adaptation systems fo-

cus on adapting the virtual content layout where elements can be

freely moved and placed. In contrast, our work assumes that the

content and interactable targets in XR are relatively static due to

being physical objects that users may want to keep intact, and to

minimize changes in the environments. Instead, we believe that

the user and their interaction should adapt to their current con-

text. Inspired by those layout adaptation works, we employed a

multi-objective optimization framework for adaptation due to its

simplicity, scalability, and ability to balance multiple objectives in

a controllable and clear way [47].

There has been limited exploration into adapting selection tech-

niques or selecting appropriate input tools in XR. Although some

early efforts have explored the adaptation of selection techniques

in a virtual environment [7, 34, 46], these studies often remain con-

ceptual, do not comprehensively address dynamic environmental

factors and user states in real-time, focus more on personalization,

or on singular objectives that do not reflect the different trade-

offs between selection techniques. Other works have changed the

modality of selection techniques based on its availability or stability.

For example, Sidenmark et al. [54] switched the gaze input to the

controller or head when the quality of the gaze signal dropped, and

Yigitbas et al. [62] switched to the gaze control when controllers

were unavailable. Recent work has included selection techniques

in the XR layout adaptation [10]. In contrast, our work focuses on

a real-time adaptation system for the interaction technique itself

based on environmental and user-based contextual information and

considers multiple objectives for interaction.

3 ADAPTIQUE
We define the problem of adapting the interaction technique as

follows: given a virtual environment with all inferred selection

targets, the system will choose the interaction technique that maxi-

mizes selection task performance in terms of four objectives: speed,

accuracy, comfort, and familiarity. Speed, accuracy, and comfort

are three common metrics used to evaluate interaction technique

performance [5]. However, while advanced interaction techniques

improve performance in selection tasks, they often come with trade-

offs such as increased complexity in control and higher levels of

abstraction. Overcoming these drawbacks necessitates user famil-

iarity [52]. Therefore, we consider it as one of the inputs in our

system. We quantify these metrics and give objective scores to aid

in our optimization process. The system would then post-process

the data and switch the interaction technique for the user. Techni-

cally, the system works in the following steps as illustrated in the

pipeline of Figure 2:

• Acquire the targets within the interaction space.

• Extract contextual information, including user postures,

target positions, sizes, and so on.

• Calculate and aggregate the objectives for each technique.

• Switch the technique if a more optimal one shows a consis-

tent improvement in overall performance.

3.1 Extracting Contextual Information
We first extract contextual information from the environment and

the user that will be used as input for adaptation. We define the

interaction space as a cone with a radius of 𝑟𝑐 originating from

the pointing direction. This space represents the user’s temporal

area of attention, ensuring that only targets that are relevant for

interaction are considered for adaptation, and also reduces the

required computation. Every object within this area is included as

input for adaptation.

After defining the set of objects for interaction, we provide po-

sitions and sizes for all targets in 3D and 2D space relative to the

controller. We provide target information in both 3D and 2D space

as some techniques (i.e. common RayCasting) do not consider depth-

based information and effective target sizes are therefore affected

by occlusion, while some techniques (i.e. RayCursor [3] and Gaz-

eRayCursor [8]) utilize depth-based information of targets which

ignores occlusion. For 3D information, we simply provide the 3D

target positions, shapes, and sizes relative to the controller position.

For the targets’ 2D space, we project all targets’ 3D meshes onto

a plane perpendicular to the controller’s pointing direction. The

projected targets are scaled to ensure that their visual size remains

consistent. To incorporate occlusion, we calculate a convex mesh of

3
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Figure 2: The Adaptique pipeline extracts user and environmental input, applies the workingmechanism of selection techniques
to calculate model input for each selectable object and techique, aggregates the objects’ objective scores for each technique, finds
the optimal technique for the interactable objects, and switches the technique if the performance gain is above a threshold.

the projected vertices to form an outline polygon using CGAL [57].

The outline polygon is then clipped by other outline polygons that

occlude the object through Clipper2 [30]. Finally, we recalculate

the target centroid (𝑐) using the final clipped polygon. For each

target, we provide the final 2D outline polygons that define their

activation region along with their position relative to the controller

position.

In addition, we provide information about the posture of the user

and their current selection technique as input. As most VR systems

only provide tracking via controllers and the head-mounted display

(HMD), we generate and provide the user’s current posture based

on inverse kinematics using the HMD and controller position as

input. The 2D and 3D environmental information is updated every

frame along with the user information.

3.2 Objectives
Adaptique leverages multiple objectives to find the overall best

technique given the contextual information provided. Each objec-

tive defines a set of parameters that each interaction technique

has to provide for every interactable object to calculate objective

scores. Then, all objective scores are calculated for each target and

interaction technique. The objective scores of the techniques are

then aggregated to a final overall score for each technique. For

our implementation of Adaptique, we use common performance

metrics and formalize them using established models of human

performance and movement. The system can easily be expanded to

include more objectives and individual objectives can be altered or

replaced to better suit the chosen interaction techniques.

3.2.1 Speed. Speed (𝑆𝑆 ) is one of the most common performance

metrics and selection objectives. We define speed score based on

the widely used index of difficulty (ID) formula in the Shannon

formulation based on Fitts’ Law

𝑆𝑆 = −𝑙𝑜𝑔2 (
𝐴

𝑊
+ 1), (1)

which states that the difficulty of selection, and thereby the speed

of selection, increases with larger target amplitude and smaller

target width [41]. The formula relies on two main parameters,

movement amplitude 𝐴, and the target size𝑊 , both visual angular

(Figure 3a). For this work, we define𝑊 as the effective width of

the target activation region along the pointing path, defined as

a vector between the current pointing direction and the target

centroid, which has been shown to play a greater role than its visual

boundaries on selection time [24, 58]. The movement amplitude 𝐴

is the angular distance the ray needs to travel along that path to

the aiming center of the target. Here, we use the centroid point of

the activation region as the aiming center. To have a higher score

representing higher performance, we add a negative sign to the

objective. Finally, note that Fitts law commonly requires the fitting

of additional parameters (𝑎 and 𝑏) based on performance data to

predict the selection speed. However, since all techniques in this

paper’s implementation are based on controller pointing, we assume

that these remain consistent between techniques, thus removing

the need for fitting additional parameters and collecting user data.

These should be added if Adaptique is expanded tomultiple pointing

modalities.

3.2.2 Accuracy. We utilize the EDModel by Yu et al. [64] to formal-

ize our accuracy objective (𝑆𝐴). The EDModel defines an endpoint

distribution for pointing-based selection. To calculate the probabil-

ity of successful selection, we integrate the distribution with the

target activation boundary, which we define as our accuracy score

𝑆𝐴 =

∬
𝐷

1

2𝜋𝜎𝑥𝜎𝑦
exp

(
− (𝑥 − 𝜇𝑥 )2

2𝜎2𝑥
− 𝑦2

2𝜎2𝑦

)
𝑑𝑥𝑑𝑦. (2)

The variables 𝜇𝑥 , 𝜎𝑥 , and 𝜎𝑦 are derived from regression using

collected pointing endpoint selection data [64]. In the integral of

Equation 2, we define the 𝑥-axis as the direction of movement, the

𝑦-axis as perpendicular to the direction of movement, and 𝐷 as

the target activation region. We use the same definition for the

direction of movement as in our speed objective. To simplify the

integral calculation, we approximate 𝐷 using a rectangle defined

by coordinates (𝑥1, 𝑥2, 𝑦1, 𝑦2), where 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are the

intersection points on the boundary of the activation region with

the axes (Figure 3b). Equation 2 can then be simplified to
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𝑆𝐴 =
1

4

(
erf

(
𝑦1√
2𝜎𝑦

)
− erf

(
𝑦2√
2𝜎𝑦

)) (
erf

(
𝜇 − 𝑥2√
2𝜎𝑥

)
− erf

(
𝜇 − 𝑥1√
2𝜎𝑥

))
.

(3)

3.2.3 Comfort. To define comfort (𝑆𝐶 ), we use a modified Strength

metric from the Consumed Endurance (CE) model to quantify arm

fatigue caused by selecting a target [28]. In the CEmodel, the torque

exerted on the shoulder muscle must match the gravity torque ®𝑔:
®𝑇𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = | |®𝑟arm ×𝑚 ®𝑔| |. (4)

Where ®𝑟arm is the distance from the shoulder joint to the center

of mass of the arm, and𝑚 is the mass of the arm. As users need to

move their arms to reach a target, we calculate the shoulder torque

for the predicted poses that users will perform during pointing.

For simplicity, we assume that users will move the ray toward the

aiming center of the target (defined in subsubsection 3.2.1) along

the direction of movement by rotating their forearm with a fixed

elbow position and positioning their wrist in a way that the ray is

in the same direction as the forearm.

We also assume that users move their forearms at a constant

rotational speed. Furthermore, we know that longer interaction

time requires more energy and can lead to fatigue when endurance

limits are reached [28]. To quantify this effect of time in energy,

we sum up the torques of all postures (derived from the initial user

posture described in subsection 3.1) along the pointing movement

path, generated at rotational increments of 𝛽 degrees toward the

final rotation (Figure 3c). This sum represents the exertion required

for a selection, where a higher exertion represents lower comfort.

To keep consistency that a higher score represents less exertion,

we negate the exertion:

𝑆𝐶 = −
∑︁
pos𝑖

| | ®𝑇
shoulder,pos𝑖

| |. (5)

3.2.4 Familiarity. Although a more advanced technique may be

more efficient as defined by our performance objectives, users may

still want to use simple techniques when they are sufficient to

reduce effort and cognitive load. As such, each technique is assigned

a “Familiarity” score

𝑆𝐹 = 𝑆𝐹 , 𝑡𝑒𝑐ℎ if Technique = 𝑡𝑒𝑐ℎ, (6)

which represents the user’s familiarity with the technique and

the technique’s complexity. Therefore, simpler techniques are ex-

pected to have higher familiarity scores than advanced techniques

that require more interaction steps. In our implementation, we de-

termine the familiarity for each technique based on pilot testing

for simple selection tasks. In the future, we envision the potential

for individual adaptation based on user exposure and performance

with different interaction techniques [52]. However, this remains a

subject for future investigation.

3.2.5 Normalization and Aggregation. After computing the objec-

tive scores for each selection technique and all objects within the

interaction space, the objective scores are aggregated and normal-

ized (between 0 and 1) to arrive at a single value that represents

the overall score for a specific technique. We use Min-Max normal-

ization, where the minimum (𝑠𝑚𝑖𝑛) and maximum (𝑠𝑚𝑎𝑥 ) represent

Figure 3: Scoring parameters used for objectives (a) Speed, (b)
Accuracy, and (c) Comfort. The grey sphere is the target.

the theoretical limits of each objective model. For limits that do

not have a theoretical bound, we consider extreme cases in our

implementation. For example, we consider the smallest target size

based on the display limitations and the largest target amplitude as

the angle of the interaction region cone (𝑟𝑐 ), and the largest possible

motion at the most strenuous user position. For special cases such

as when an object’s activation region is zero due to occlusion, we

assign the minimum value as the target is unselectable.

In addition, to reduce noise caused by environmental or user

factors, we apply an exponential smoothing factor to all objectives

calculated for each target and technique, defined by a smoothing

factor 𝛼 . Therefore, the score of each objective in the time frame 𝑡

is defined as

𝑆𝑡 = 𝛼 ×
∑
𝑠
obj𝑖

/𝑁 − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
+ (1 − 𝛼) × 𝑆𝑡−1 . (7)

For aggregation, we calculate the average of each objective scores

across all objects within the interaction space. This implies that

each object is treated equally important for optimization. In fu-

ture versions, weighted averages together with target prediction

approaches [11, 27] could be deployed to give objects that are more

likely to be interacted with a higher priority.

3.3 Technique Switching
The most optimal interaction technique will then be decided by

considering the comprehensive result of the objectives

Optimal = argmax

𝑡𝑒𝑐ℎ

(𝑘𝑆 × 𝑆𝑆 + 𝑘𝐴 × 𝑆𝐴 + 𝑘𝐶 × 𝑆𝐶 + 𝑘𝐹 × 𝑆𝐹 ) . (8)

Designers can give the objectives differentweightings (𝑘) depending

on user tasks or contexts. For example, in a password input task,

designers might want to prioritize accuracy and therefore give a

higher weighting to the accuracy objective.

Finally, to activate a switch in the interaction technique, we en-

sure that the optimal technique is optimal for 𝑛 frames within a

𝑤-frame window to ignore brief and sudden technique switches.

Within these 𝑛 frames, the difference between the most optimal

technique and the current technique must be greater than 𝑡𝑜 . Al-

though this introduces a minor delay in switching, we posit that

users will be more susceptible to technique switches if the switches

are only performed when needed. 𝑤 , 𝑛 and 𝑡𝑜 can be adjusted to

tune the responsiveness and sensitivity of technique switching. To

aid users in noticing technique switches, we applied haptic and

audio feedback. The controller and ray also change to a unique

color for visual feedback.
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Figure 4: Context score implemented for 3 techniques (a)
RayCasting, (b) StickyRay, and (c) RayCursor. The lower fig-
ure visualizes the effective size (𝑊 ) and amplitude (𝐴) of the
blue target. The upper figure shows the projection of the
activation region of the target.

3.4 Selection Techniques
Our version of Adaptique is implemented with three controller-

based pointing techniques: RayCasting, StickyRay, and RayCursor.
These were chosen to cover a wide range of pointing scenarios,

from regular pointing to small targets, dense environments, and

occlusion. We intentionally omitted techniques that require extra

sensing, hardware or modalities beyond a typical VR controller.

However, note that Adaptique can easily be expanded to include

more techniques. To integrate these techniques into Adaptique, the

selection technique must define𝑊 , 𝐴 and (𝑥1, 𝑥2, 𝑦1, 𝑦2) for every
target in the interaction space. Each technique must also define 𝑆𝐹𝑖
for the familiarity objective. In the following, we introduce each

included technique and how we define these variables to calculate

our objectives.

3.4.1 RayCasting. RayCasting (Figure 4a) represents the most ba-

sic pointing technique in which the user points with a ray that

originates from the controller and the target hit by the ray is high-

lighted for selection. Due to its simplicity and popularity in 3D

interaction, we treat it as a base case for selection. We define 𝐴 as

the angle from the current pointing direction to the center of the

object in the 2D space as defined in subsection 3.1.𝑊 is then the

angular width of the object along the pointing direction. 𝑥1 and 𝑥2
are then defined as the entry and exit points, respectively, of the 2D

object along the pointing direction, while 𝑦1 and 𝑦2 are defined as

the outline points along a line that is perpendicular to the pointing

direction and crosses the center of the object. For completely oc-

cluded targets, we assign the minimum score to each objective for

that target. Notes that users might change the point of view to make

targets unoccluded. In this case the system will reflect the change as

it continuously adjusts in real-time as users complete the selection.

Despite RayCasting being the most widely used technique, users’

inherent hand tremors can result in instability in pointing accuracy,

particularly when selecting small objects. Additionally, when the

number of objects in the environment increases, selection becomes

more difficult due to the close proximity of objects and occlusion.

3.4.2 StickyRay. We included StickyRay as a second technique

for selection of small targets. StickyRay is based on the Bubble

Cursor metaphor [22], where the object nearest to the pointing

direction is highlighted for selection. This mechanism expands the

effective width of each target to a region that together builds a

Voronoi diagram, thus making selection of small targets easier. To

show the current closest object, a second ray bends toward the

closest object [55]. In our implementation, we used the angular

distances from the pointing direction to the targets to decide the

current closest target, as it has been shown to be the best performing

version in 3D settings [40]. As such, the object activation region is

the space in which the ray forms the smallest angular distance to

the object compared to all other objects (Figure 4b). This process

is equivalent to finding the Voronoi region in projected 2D space,

with each point’s Euclidean distances defined by their angular

distance to the ray direction.We use Qhull [4] to find the 2DVoronoi

region and then clip it by the interaction space. We first find the

two intersection points 𝑝1 and 𝑝2 of the line of movement and its

projected 2D Voronoi region. Then we get𝐴 as the angular distance

from the origin to the centroid point of the voronoi region, and𝑊

as the angular distance between 𝑝1 and 𝑝2. 𝑥1, 𝑥2, 𝑦1, and 𝑦2 are

defined as with RayCasting but instead using the Voronoi region

as target borders.

While easier to select small targets compared to RayCasting,

StickyRay can be unintuitive, as it encourages pointing outside

the visual boundaries of the target. Furthermore, a consequence of

the Bubble Cursor mechansism is that a target will always be high-

lighted for selection, whichmay not always be preferable depending

on the context of use. Finally, although StickyRay is proficient in

selecting small targets and selection in sparse environments, the

benefit of the technique diminishes in crowded environments and

when occlusion is present.

3.4.3 RayCursor. To handle dense environments and target occlu-

sion, we included RayCursor, where the user controls a cursor on

the ray by swiping on the controller touchpad to select targets at

different depths [3]. Like StickyRay, RayCursor has a proximity

selection mechanism that will pre-select the object nearest to the

cursor to improve performance in selecting small or distant targets.

To minimize the need for swiping, the technique has a snapping

mechanism that moves the cursor immediately to the depth of the

first pointed object’s surface. We choose the semi-auto version of

RayCursor with the VitLerp transfer function for cursor movement,

as it was shown to be the highest performing version [3]. The

semi-auto version disables the snapping mechanism when users

manually control the cursor through swiping, and reactivates after

the trackpad has been released for more than one second. Since a

selection with RayCursor can be performed solely with moving the

ray or a combination of moving the ray and swiping on the trackpad

to move the cursor, its movement is difficult to define. Therefore, we

only consider the controller movement for modeling to simplify the

calculations. To calculate 𝐴 and𝑊 , we first compute a 3D Voronoi
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region based on the provided 3D space using QHull [4]. We then

project the 3D Voronoi regions to the control space and calculate 𝐴

and𝑊 as in other techniques while ignoring occlusion (Figure 4c).

𝑥1, 𝑥2, 𝑦1, and 𝑦2 are defined as with RayCasting and StickyRay but

instead using 3D Voronoi projected to control space.

The RayCursor provides easier selection in dense and occluded

environments as it leverages additional depth information for selec-

tion. However, the additional interaction steps necessary increase

its complexity compared to RayCasting and StickyRay.

3.5 Implementation
We implemented Adaptique in Unity. We used the HTC Vive Pro

Eye which has a 110
◦
FOV and a 2880 × 1600 resolution and the

Vive controller for pointing input. The controller trackpad was

used to control the cursor for RayCursor and the trigger was used

to select targets. We used the built-in Unity Inverse Kinematics

library to generate user postures. We relied on previous studies to

define values for objective parameters that require empirical values.

For the accuracy objective, we relied on previous studies by Yu

et al. [64] to establish values for the endpoint distribution model:

𝜇 = −0.1441 ×𝑊 + 0.2649, 𝜎𝑥 = 0.0066 ×𝐴 + 0.1025 ×𝑊 + 0.2663,

and 𝜎𝑦 = 0.0085×𝐴+0.0679×𝑊 +0.1437. For the comfort objective,

we used the equation specified by Hincapié-Ramos et al. [28] to

calculate the center of mass for r and 𝑚. As input, we used the

following values specified by Freivalds [19]: 33cm long upper arm

weighing 2.1 kg with the center of mass located at 13.2cm; 26.9cm

long forearm weighing 1.2 kg with the center of mass located at

11.7cm; 19.1cm long hand weighing 0.4kg with the center of mass

located at 7cm.

4 APPLICATION
To show the versatility and benefits of Adaptique in general se-

lection tasks, we developed an everyday indoor VR environment

where users interact with IOTs, books, food, and UI elements. In

this app, users can point to an interactable target, which displays a

brief command description (e.g., ‘turn on the light’). By pressing

the trigger button on the controller, the command is executed. The

application and its interactions are designed to represent common

selection scenarios found in VR environments. Adaptique was de-

veloped as specified in section 3. We applied the following objective

weightings: 𝑘𝑆 = 0.5 for speed, 𝑘𝐴 = 0.2 for accuracy, 𝑘𝐶 = 0.15 for

comfort, and 𝑘𝐹 = 0.15 for familiarity. We applied the following nor-

malized familiarity scores: 𝑆𝐹, RayCasting = 0.57, 𝑆𝐹, StickyRay = 0.33,

𝑆𝐹, RayCursor = 0.1, and the following parameters: interaction space

cone with radius 𝑟𝑐 = 20
◦
, smoothing factor 𝛼 = 0.8, the threshold

of 𝑛 = 15 number of frames with improvement above 𝑡𝑜 = 0 within

𝑤 = 20 windows, and the rotational increments of 𝛽 = 1
◦
to derive

interaction postures.

To exemplify the benefits of Adaptique, we detail a walkthrough

of the application. In the living room of the virtual house, the user

first points to the light switch on the wall, attempting to turn on

the light. Since it is too far away and small, they struggle to select

at the beginning. Adaptique continuously senses the environment

and user’s state and immediately switches RayCasting to StickyRay.

StickyRay snaps the ray to the light switch and makes the selection

easier (Figure 5a). Afterward, theywant to pick a book to read. There

are books laid out on the shelves and stacked on the table. Adaptique

smoothly switches to RayCasting when the books are large enough

for easy selection (Figure 5b), and switches to RayCursor when the

book is occluded (Figure 5c). The user controls the depth of the

cursor on the trackpad to pick the book hidden behind. With the

responsive assistance of Adaptique, they can precisely select the

book to read.

They select a sandwich-making guide and decide to go to the

kitchen to check the required ingredients. On their way to the

kitchen, they turn off the light and TV to save electricity. Adaptique

chooses the simplest RayCasting because the IOTs are now near

and big and therefore easy to select (Figure 5d).

The kitchen is clutteredwithmany foods, ingredients, and kitchen-

ware. Adaptique chooses RayCursor to handle the dense environ-

ment (Figure 5e). This allows them to easily pick the tomato in

the stack of fruits, the piece of toast on the cutting board with a

blanket of bread around, and the bottle of olive oil arranged on the

top cabinet. After they check all the food ingredients they have,

they find that ham and cabbage are out of stock. Therefore, they

open an online grocery shopping app to order them. Since the UI

buttons on the pop-up panel are designed to be easy to interact

with, Adaptique picks RayCasting for easy interaction (Figure 5f).

They select the ingredients icon and the checkout button to order

and wait for the ingredients to be delivered. In sum, the application

showcases the following advantages:

• Adaptique responsively switches the technique when the

content of the user’s interest changes, assisting users to

interact with a non-homogeneous setting of the environ-

ment.

• Adaptique comprehensively considers the user’s perfor-

mance in time, accuracy, comfort, and familiarity. When the

task is easy enough to be used with a basic technique, Adap-

tique will stick to the basic one. When the task becomes

harder to complete with that technique, it will automatically

switch to a more advanced and suitable one.

• Adaptique provides a smooth, consistent, and non-distracting

transition by proactively switching the selection tool before

users point toward new targets and ensuring that the tool

remains consistent when engaging with nearby objects.

5 EVALUATION
We conducted a VR user study to evaluate the effects of Adaptique

and technique switching on selection performance. This was done

in the context of a controlled task where participants had to select

one target among many in different environments. We compared

Adaptique to using only StickyRay and RayCursor. As the study

focused mainly on performance metrics, we tested a simplified

version that adapts between two techniques that are known to have

complementary advantages to validate the concept of Adaptique. As

such, we did not include RayCasting as a baseline nor as a technique

used in Adaptique.

5.1 Task
Participants were tasked to select a target object amongst many

distraction targets. We varied the size of the selectable target, and
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Figure 5: Adaptique chooses different techniques for different scenarios in the application, such as interacting with (a) IOTs on
the far wall, (b) books layout on the nearby bookshelf, (c) books stacked on the coffee table, (d) IOTs on the side, (e) ingredients
in the cluttered kitchen, and (f) UI panel in front of the users.

the number of targets and density of the environment. We con-

sidered two size conditions: large (2.5
◦
) and small (0.5

◦
), and four

different environments that varied in distractor amount and density

to cover both simple and extreme cases that users might encounter

in XR. The environments were also balanced, so that two environ-

ment types exploited the advantages of StickyRay, and similarly

two environments exploited the advantages of RayCursor. To start

the task, the user first had to align the pointer to a central posi-

tion. After alignment, the target object and the distractors were

displayed. The participants had to select the target object as fast

and accurately as possible. The distractors were primitive shapes

(cubes, spheres, cylinders, and capsules), in pseudo-random posi-

tions and sizes (2-4
◦
), and random rotations. The distractor targets

were semitransparent to minimize the effect of visual search in

dense and occluded settings. No objects intersected with each other.

The selection target was a sphere and randomly placed within the

target region but had to be at least 0.4 meters away from the bound-

ary so that the target was not at the edge within the environment

and 0.2 meters away from the center to ensure movement before

selection. The environments were as follows:

Sparse: In the sparse environment (Figure 6a), the target ob-

ject and distractors were spawned within a 3𝑚 × 3𝑚 × 3𝑚

cubic region 2 meters away from the participant. There

were a total of 10 objects: 1 target object and 9 distractors.

The environment represented a simple case of selection.

Dense: The dense environment (Figure 6b) also consisted of a

3𝑚×3𝑚×3𝑚 cubic region 2 meters away but contained 240

objects, making the selection target densely surrounded by

other objects. The target was likely to be partly occluded

by distractors from the view of the participant.

Flat: In the flat environment (Figure 6c), the spawning region

was a 3𝑚 × 3𝑚 × 1𝑚 cubic region 2 meters away, resulting

in a spread-out placement at a similar depth. We used a

total of 30 objects.

Deep: In the deep environment (Figure 6d), the spawning

region was a 1.5𝑚 × 1.5𝑚 × 4𝑚 cubic region 2 meters away.

A total of 30 objects were spawned. Though the density

of the environment (30 objects in 90𝑚3
volume) was the

same as the Flat environment, the arrangement of objects

extended more in the depth direction.

We pregenerated eight trials of each unique combination of

target size and environment to use for all techniques. In sum, the

study used the following independent variables and levels:

• Techniqe: StickyRay, RayCursor, Adaptiqe

• Target size: Small (0.5◦), Large (2.5◦)
• Target environment: sparse, dense, flat, deep

5.2 Apparatus and Participants
The interaction techniques and Adaptique were implemented as

described in section 3 except that RayCasting was not included as

a baseline or in Adaptique. The participants performed the tasks

with the controller in their dominant hand. Selection was done

with the trigger button, and depth cursor control with the trackpad.

Since our study focuses on performance, we applied the following

objective weightings: 𝑘𝑆 = 0.5, 𝑘𝐴 = 0.2, 𝑘𝐶 = 0.2, and 𝑘𝐹 = 0.1. We

applied the following normalized familiarity scores: 𝐹
StickyRay

= 0.7,

𝐹RayCursor = 0.3. The rest of the parameters are the same as those

in section 4.

We recruited 18 participants to carry out the study (12 male, 6

female, 19-32 years old). One used VR/AR weekly, thirteen used

VR/AR occasionally, and four had never experienced VR/AR before.

5.3 Procedure
Upon arrival, participants completed a consent form and a demo-

graphic questionnaire before being briefed about the study. The

participants would then be placed in the correct standing position

and put on the HMD. The participants then performed a practice

session to familiarize themselves with each selection technique.

Participants then performed all selections using each technique. In

each technique section, and a total of 64 trials (2 Target size × 4

Target environment × 8 repetitions) were presented in random

order. The order of the techniques was counterbalanced with a bal-

anced Latin square. Participants needed to select a central “ready”
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Figure 6: Environments used in the study, including (a) Sparse
(b) Dense (c) Flat, and (d) Deep.

panel before starting the trial. This served as a rest period and

ensured that users started the next trial from a central position. The

participant then selected the target object that was highlighted in

yellow. The participants were unable to move on to the next trial un-

til the correct object had been selected or a 15-second timeout had

elapsed. After finishing all the trials with a technique, participants

completed a questionnaire for subjective feedback to capture their

experiences and rested before moving on to the next technique. Par-

ticipants were asked to make practice selections with the current

technique to refresh their memory before starting. The study was

concluded with a questionnaire for preferences and feedback. In

total, we collected 18 participants × 3 Techniqe × 2 Target size

× 4 Target environment × 8 repetitions = 3456 selections.

5.4 Results
Unless otherwise stated, the analysis was performed with a 3-way

repeated measures ANOVA (𝛼=.05) with Techniqe, Size, and En-

vironment as independent variables. Before analysis, we removed

outlier trials. Trials were discarded if their selection times, transla-

tional movement, or rotational movement were beyond 3 standard

deviations from their respective grand mean. In total, 164 out of

3456 trials were discarded (4.7%). We tested the normality of the

data group with the Kolmogorov-Smirnov test and QQ-plots. If ex-

treme outliers were identified within the aggregated analysis data,

defined as values beyond 𝑄𝑅 ± 3 × IQR, a winsorization process

was applied. When the assumption of sphericity was violated, as

tested with Mauchly’s test, Greenhouse-Geisser corrected values

were used in the analysis. Bonferroni-corrected post hoc tests were

used when applicable. The effect sizes were reported as partial eta

squared (𝜂2𝑝 ). Questionnaire scores were analyzed using Friedman

tests, and Bonferroni-corrected Wilcoxon signed-rank tests were

used for post hoc analysis.

5.4.1 Selection Time. We defined the selection time as the time

elapsed from the start of the trial to the completion of the se-

lection. We applied a square-root transformation since the dis-

tribution of selection time was slightly positively skewed. Sig-

nificant main effects were observed for Techniqe (𝐹2,34=45.27,

𝑝<.001, 𝜂2𝑝=.73), Size (𝐹1,17=72.83, 𝑝<.001, 𝜂
2

𝑝=.81), and Environ-

ment (𝐹1.74,29.50=374.63, 𝑝<.001,𝜂
2

𝑝=.96). Post hoc analysis of Tech-

niqe main effect (Figure 7a) revealed that both Adaptique and

StickyRay were faster than RayCursor (both 𝑝<.001).

Additionally, we found no significant three-way interaction.

However, we found significant two-way interactions for Tech-

niqe × Environment (𝐹3.8,64.60=15.02, 𝑝<.001, 𝜂
2

𝑝=.47) and Tech-

niqe × Size (𝐹2,34=16.58, 𝑝<.001, 𝜂
2

𝑝=.494). Post hoc analysis of

Techniqe × Environment results (Figure 7b) showed that in the

Sparse environment, Adaptique and StickyRay outperformed Ray-

Cursor in speed (both 𝑝<.001). In the Flat environment, StickyRay

emerged as the significantly fastest technique, followed by Adap-

tique, with RayCursor being the slowest (all 𝑝<=.003). In the Deep

environment, StickyRay also proved to be faster than RayCursor

(𝑝=.032). The techniques did not differ significantly in the Dense

environment. For all techniques, users were significantly quickest

in the Sparse environment, followed by the Flat, Deep, and Dense

environments, the latter resulting in the slowest performance (all

𝑝<.001). For the Techniqe × Size interaction (Figure 7c), both

Large and Small targets were selected significantly faster with

StickyRay and Adaptique compared to RayCursor (all 𝑝<.001).

5.4.2 Movement. We considered translational and rotational move-

ment for the analysis, defined as the total distance traveled and

the angle of rotation of the controller from the start of the trial

until the selection was completed. Since both metrics were severely

positively skewed, we performed a reciprocal transformation to

meet the normality requirement.

For translational movement, there were significant main ef-

fects of Techniqe (𝐹2,34=29.48, 𝑝<.001, 𝜂
2

𝑝=.63), Size (𝐹1,17=32.81,

𝑝<.001,𝜂2𝑝=.66), and Environment (𝐹2.05,34.87=53.85, 𝑝<.001,𝜂
2

𝑝=.76).

Adaptique and RayCursor required significantly less movement

compared to StickyRay (both 𝑝<.001, Figure 7d). Furthremore,

no significant three-way interaction was found. Significant two-

way interactions were observed for Techniqe × Environment

(𝐹3.68,62.62=13.54, 𝑝<.001, 𝜂
2

𝑝=.46) and Techniqe × Size. Post hoc

analysis of Techniqe × Environment (Figure 7e) showed that in

the Sparse, Dense and Deep environments, Adaptique and RayCur-

sor required significantly less movement compared to StickyRay (all

𝑝<=.008). While in the Flat environment, we observed that only

Adaptique required significantly less movement than StickyRay

(𝑝=.003). For Techniqe × Size interaction (Figure 7f), selecting

both Large and Small targets with Adaptique and RayCursor re-

quired less movement than selecting with StickyRay (all 𝑝<.001).

Similarly, for rotational movement, the main effects were also sig-

nificant forTechniqe (𝐹2,34=6.42, 𝑝=.004,𝜂
2

𝑝=.27), Size (𝐹1,17=54.03,

𝑝<.001,𝜂2𝑝=.76), and Environment (𝐹1.75,29.81=43.69, 𝑝<.001,𝜂
2

𝑝=.72).

Techniqe post hoc analysis (Figure 7g) showed that Adaptique
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Figure 7: Mean selection time, translational movement, rotational movement, and error rate. Error bars represent the mean 95%
confidence intervals. The symbol ∗ indicates 𝑝<.05, ∗∗ indicates 𝑝≤.01, and ∗∗∗ indicates 𝑝≤.001.

again had an advantage, requiring significantly less rotational move-

ment than StickyRay overall (𝑝=.007). However, no significant three-

way interaction was found. Significant two-way interactions were

found forTechniqe× Environment (𝐹6,102=8.04, 𝑝<.001,𝜂
2

𝑝=.32)

and Techniqe × Size (𝐹1.45,24.67=6.21, 𝑝=.012, 𝜂
2

𝑝=.27). Regarding

Techniqe × Environment (Figure 7h), in Flat environments,

both Adaptique and StickyRay demanded significantly less rota-

tional movement than RayCursor (both 𝑝<=.036). In contrast, in

Dense and Deep environments, Adaptique and RayCursor required

significantly less movement than StickyRay (all 𝑝<=.043). Addition-

ally, in the Sparse environment, Adaptique required significantly

less rotational movement than RayCursor (𝑝=.006). For StickyRay,

the Sparse environment resulted in significantly least rotational

movement, followed by Deep and then Dense, with the Flat en-

vironment also requiring significantly less movement than Dense

(all 𝑝<=.026). For RayCursor and Adaptique, the Sparse and Deep

environments again required significantly less movement, while

Dense resulted in the significantly highest movement (all 𝑝<=.01).

For Techniqe × Size interaction (Figure 7i), Adaptique required

significantly less rotational movement than StickyRay regardless of

the target size, and required significantly less rotational movement

than RayCursor when selecting Small targets (all 𝑝<=.023).

5.4.3 Error Rate. We defined an error as any trial with at least one

missed selection or with a timeout. The error rate was determined

by the number of errors divided by the total number of trials within
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the same condition. We included all trials in this analysis. We pre-

processed the data with an Aligned Rank Transform (ART) [60]

and ART-C preprocessing for post hoc analysis when relevant [15].

We found significant main effects for Techniqe (𝐹2,34=30.27,

𝑝<.001, 𝜂2𝑝=.64), Size (𝐹1,17=16.81, 𝑝<.001, 𝜂
2

𝑝=.50), and Environ-

ment (𝐹3,51=109.37, 𝑝<.001, 𝜂
2

𝑝=.87). Post hoc analysis (Figure 7j) of

Techniqe revealed that using Adaptique and RayCursor resulted

in significantly less error rate than using StickyRay (both 𝑝<.001).

We found no significant three-way interaction for error rate.

However, we observed significant two-way interactions for Tech-

niqe× Environment (𝐹3.51,59.72=13.16, 𝑝<.001,𝜂
2

𝑝=.44) andTech-

niqe × Size (𝐹2,34=5.8, 𝑝=.007, 𝜂
2

𝑝=.25). Further Techniqe × En-

vironment analysis (Figure 7k) revealed that in the Dense and

Deep environment, StickyRay resulted in significantly higher error

rate than RayCursor (𝑝<=.023). While using StickyRay, selecting in

a Dense and Deep environment results in significantly more errors

than selecting in a Sparse and Flat environment (all 𝑝<.001). Ana-

lyzing the Techniqe × Size interaction (Figure 7l), we found that

when selecting Small targets, Adaptique and RayCursor resulted

in significantly fewer errors than using StickyRay (all 𝑝<=.003).

When selecting Large targets, Adaptique resulted in a significantly

lower error rate than StickyRay (𝑝=.001).

5.4.4 Summary of Quantitative Results. Our quantitative study

results showed that Adaptique consistently achieved optimal per-

formance for all metrics in different contexts. Although single tech-

niques occasionally performed as well as Adaptique in specific

metrics, they exhibited performance degradation in other metrics

or a particular environment. For example, although StickyRay per-

formed as well as Adaptique in selection time, it required more

movement and caused more errors, especially in dense and deep en-

vironments. Similarly, RayCursor performed comparably to Adap-

tique in terms of movement and accuracy, but required significantly

more selection time, and even worse in sparse and deep environ-

ments. In contrast, Adaptique performed comprehensively well in

all metrics, indicating that our system effectively balanced between

different objectives and technique trade-offs.

5.4.5 Questionnaire Results and Preferences. Friedman tests on us-

ability ratings showed significant results in perceived Precision

(𝜒2 (2)=7.26, 𝑝<.05), Difficulty (𝜒2 (2)=7.00, 𝑝<.05), and Confidence

(𝜒2 (2)=6.26, 𝑝<.05). However, Wilcoxon post hoc tests with Bon-

ferroni correction did not show any significant differences.

The majority of the participants (ten) preferred Adaptique over

the other techniques, while four chose StickyRay and four chose

RayCursor. Adaptique was considered “fast”(P6), “precise” (P13),

“easy to navigate” (P14), and "convenient" (P3), and combined the

advantages of StickyRay and RayCursor, offering the most suitable

technique for the environment (5 out of 18). P10 mentioned “both

StickyRay and RayCursor are convenient in different situations. [..]

So being able to switch to the other based on situations is preferred”.

Meanwhile, although StickyRay was “intuitive”(P1) and “easy to

use”(P12), the technique was less “precise” (P14) and “forces users

to move more” (P8) in complex environments with target occlusion

(expressed by 11 out of 18 participants). Regarding RayCursor, al-

though participants liked its “full control” (P5) of cursor depth in

cluttered environments, it was considered “harder” (P1) and more

“tiring” (P2) due to the “additional control required” (P8), especially

when there were fewer objects (9 out of 18 participants). Some

participants did not prefer Adaptique because it incorporated the

technique they did not like, or due to “delayed” (P5), or “distracting”

(P11) switching. For example, P1 said “Adaptique is uncomfortable

because it incorporated RayCursor”.

Most of the participants gave positive feedback on the switching

(14 out of 18) due to its “consistency” (P8) and “accuracy” (P16) in

technique selection, and “clear” (P14) feedback. Participants liked

that Adaptique only switched technique when needed and not in

the middle of a selection. P8 mentioned that “the switching is pretty

handy and intelligent, selecting the most efficient mode almost

all the time. The mode does not vary constantly and is consistent

enough for the user to get used to the selection.” Overall, visual,

audio, and tactile feedback helped the participants in “notifying the

technique change” (P4), and “improving the experience” (P2).

6 DISCUSSION
We introduced Adaptique to address the selection challenges in-

herent in dynamic virtual environments. Adaptique adapts the

selection technique according to a wide range of environments and

user states based on a computational approach of extracting con-

textual information that effectively captures scenarios where users

perceive objects as overlapping, too small, arranged differently, etc.

Adaptique also considers different aspects of performance built

from established selection models and balances these factors to

align with the design needs.

Our study results underscore the need for adaptivity, as using

the same technique in various scenarios can lead to difficulty and

negatively impact performance and user experience. Specifically,

our performance metric results showed that Adaptique consistently

achieved optimal results in terms of selection time, movement, and

error rate in different contexts. Although single techniques can

perform as well as Adaptique in specific metrics, they typically

exhibit performance degradation in other metrics or in particular

environments. This shows the benefit of including multiple objec-

tives in our system to reflect the trade-offs between techniques.

Furthermore, we envision future work where more objectives can

be considered to accommodate different design requirements, such

as social acceptance [14, 59], engagement [48], sensor error [53],

available range of motion [59], and more.

Our application showcases Adaptique’s utility and applicability

in a dynamic and practical setting. Adaptique can automatically

switch the selection tool to a more suitable one when the task

becomes more difficult to complete with the current tool. For ex-

ample, selecting book layouts on the bookshelf is easy with normal

RayCasting, while selecting books stacked on the table is difficult

because they can occlude one another and require extra precision.

Therefore, when users point towards the stack of books, Adaptique

smoothly and proactively switch to RayCursor, ensuring smooth

transitions and consistent tool usage in the new context. This adap-

tive behavior is driven by the interaction space spreading out from

the pointing direction, which gradually captures the context of the

user’s attention. In addition, the thresholding mechanism ensures

consistent improvement across frames before confirming a switch,

preventing users from experiencing inconsistent switching.
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During the development of Adaptique, we found that timing

and sensitivity of the switch are essential for the user experience.

In early exploration and pilot tests, users were unsatisfied with

the adaptation due to distracting and unexpected switching. This

experience was because the system was not responsive enough,

limited by the complexity of geometry computation that caused

unacceptable delays. Optimizing the system to enhance its respon-

siveness and adjusting the sensitivity using our window threshold

to avoid excessive switching significantly improved the user ex-

perience. An interesting future direction would be to combine the

current system with a user intention prediction model to decide the

optimal switching time [63]. We can also apply predictive models to

prioritize objects with which the user is more likely to interact [27],

or dynamic weighting models that can adjust objective weightings

as user context changes [29].

We considered a specific set of environmental scenarios and

selection techniques as input that we believe shows the generaliz-

ability of Adaptique for selection in common scenarios of usage.

However, Adaptique can easily be expanded to include more con-

textual information and techniques. For example, including the

moving speed of targets or users as input for the selection of mov-

ing targets [26, 37, 42] can be beneficial in scenarios such as public

transportation, interactions with moving targets like people and

animals, and gaming. The contextual information could also be

expanded to consider the history interactions to include factors

such as fatigue [16, 29] and workload [39] accumulated over time.

In addition, having more techniques, including those with different

modalities [8, 54], opens up a vast design space to integrate com-

plementary techniques. For example, switching the technique to

gaze when the arm is tired or occupied can be useful in prolonged

use. Adaptique could also provide alternative techniques for the

same selection scenario to allow users to customize their set of tech-

niques. This would address issues raised by study participants who

did not prefer Adaptique as it included techniques they disliked.

Although Adaptique is currently implemented in VR, it is in-

tended for future extension into mixed reality environments, where

physical interactable objects are rigid and the surroundings are

more dynamic and unpredictable. However, there remain limita-

tions to the tracking of the positions and shapes of real-world

objects. We believe that future improvements in object tracking

technologies will overcome these limitations [31, 50], allowing

more use cases to benefit from Adaptique. Another limitation we

encountered during implementation relates to modeling advanced

interaction techniques. For example, RayCursor, which is controlled

by a combination of ray movement and swiping on the trackpad,

makes the user interaction pattern unpredictable. Thus, we decided

to simplify the model by considering only the movement of the ray

and assuming the cursor remains at the correct depth. Future re-

search could explore more sophisticated models for RayCursor and

other advanced techniques [49]. A possible approach can also be to

employ data-driven methods to establish the relationship between

contextual information and performance metrics.

7 CONCLUSION
We presented Adaptique, an online multi-objective model that adap-

tively switches to the most optimal VR selection technique based on

user context and environment combined with human performance

objectives. The results show that Adaptique can significantly im-

prove selection time, movement, and error rate against the use of

singular techniques. In addition, a majority of participants preferred

Adaptique who expressed a positive sentiment for switching tech-

niques when exposed to various environments. In sum, Adaptique

shows that it is beneficial to switch between techniques to gain

the most performance across multiple environments. Furthermore,

considering multiple objectives is important to reflect the trade-offs

between different techniques. Our work opens up further research

on additional selection objectives, techniques, and modalities to

accurately model and adapt to interactions commonly needed in

our daily lives.
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