
Reflection Removal
Reflection Removal

Motivation
Problem Definition
Algorithm and Experiment result

Method I. Smoothness Approach
Formulation
Algorithm

Step 1
Step 2
Step 3
Step 4
Output

Result
Method II. Motion Approach

Formulation
Algorithm

Method III. User-assisted Separation of Reflections with Sparse Prior
Algorithm
Expectation-maximization(EM)
Iterative reweighted least squares optimization(IRLS)
Experiment result

Conclusion
Method I. Smoothness Approach
Method II. Motion Approach
Method III. User-assisted Separation of Reflections with Sparse Prior

Reference

No. 1 / 17

af://n8461

Motivation
 Reflection produced by glass windows is a bothering issue for photographers. Sometimes we
only want to keep the scene behind or in front of the window, but the glass window produce a
reflection of unimportant things, which is called undesired reflections. Reflection removal is a
solved problem in the past research. In this report, we implemented and discussed three
approaches according to three papers.

Problem Definition
 The figure shows the image formation model, in which the camera is taking a picture through
the glass. The resulting image will contain two layers, one is the reflected object, denoted
by , the other is the background scene, denoted by . Our goal is to remove the
reflected object part in the image.
 Therefore, we have:

 We can remove the reflected object if we get and seperatedly.

Algorithm and Experiment result

Method I. Smoothness Approach

 This method is based on the following paper:

Y. Li and M. S. Brown, "Single Image Layer Separation Using Relative Smoothness," 2014 IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 2752-2759, doi:
10.1109/CVPR.2014.346.
Paper and source code is accessed on author's website.

Formulation

 An image with reflection can be expressed as

 is the input image, 、 is two seperated layer, is the Reflection layer and is the
Background layer. Assume that desired layer is more in focus than the reflection layer, which is
blurred, so is convolved with a Gaussian filter h.

No. 2 / 17

af://n8465
af://n8467
af://n8471
af://n8473
https://doi.org/10.1109/CVPR.2014.346
https://yu-li.github.io/
af://n8477

 This paper build a model based on supposing is smoother than and therefore large
gradients are more likely to belong to .On the other hand, represents the blurred reflection
layer. To recognize smooth and sharp pattern, we use three derivative filter

 , extract large gradient in image, and is a Laplacian kernel, which can find smoother
parts. and is obtained by maximining the convolution and . This
method could get good results in 3~5 iterations.

Algorithm

Symbol Marks : Subscript or represents the pixel grid index. Superscript or represents the
filter index.

Step 1

 Current is convolved with filter and individually. An auxiliary variabes is used here.
Each pixel convolution value would be saved into if the value exceeds the threshold ,

otherwise is set to 0.

 The purpose of this step is to find sharp components in the image.

Step 2

 Calculate new from current . Based on the cost function of maximizing Convolution is:

No. 3 / 17

af://n8486
af://n8492
af://n8497

 Rewrite the above cost function and apply 2D FFT, is calculted by the following formula:

 In this formula, only is not constant. Thus, Except is calculated each iteration, other 2D
FFT is done at the initialization step.

 The numerator in the last formula means superposition of Original image and Sharper Layer
obtained by . The weight is controlled by smoothness weight , this value suggested by author is
50. is a small number(1e-6) to avoid devide by zero.

Step 3

 Normalization of makes sure that each pixel value is in the range [0, 255] (or stricter).
After FFT & IFFT at step 2, values might be amplified. Without normaliztion, different color
channel might perform different shift, and output figure color would be strange. Object function:

 、 is indicative function. 、 is equal to 1 if x < 0, otherwise
、 . Pixel values is bounded by

 Each color channel is normalized seperatedly. To implement this objective function, variable is
added to all pixels, which means a linear shift. Solve the objective function with gradient descent
to find .

 Iteration stops if is small enough or exceed 500 iterations. Ater linear shift, if there is any
pixel value still out of the bound, The pixel values is clipped to or

Step 4

 increased every iteration to make method converge faster. and are both decided by
user. Paper suggestion is , .

Output

 Reflection layer is obtained by original input image minus . Because both seperatered
layer values are smaller than original one, intensify layers by multiply a value such that maximum
in both layer are .

No. 4 / 17

af://n8507
af://n8516
af://n8518

 Original Backgroud Reflection

1

2

3

4

Result

Discussion

1. Sample0.jpg : (Image from paper.) This Input image has obvious reflection of aisle.
Most of the white walls are removed. Some yellow light is left, perhaps the yellow is
siginificant, thus cannot remove it totally.

2. Sample1.jpg : (Our photo.) Reflection in front of the door is removed and a little outline
is left. Reflection in front of the bookshelves is not well recognized in reflection layer.
Complicated background might be an issue to deal with.

3. Sample2.jpg : (Our photo.) In this photo, undesired reflection is the desks and chairs in
front of the blue background. However, the reflection layer is composed of Clouds and

No. 5 / 17

af://n8521

building. Take a close look at this photo, the problem is that the photo is out of focus, so
most of the components are blurred. Here bring up a problem : Smoothness approach
method assume that reflection is blurred, this method can only apply to the photo is
well focused. In addition, Clouds are flattened.

4. Sample3.jpg : (Our photo.) Tree reflection is well recognized in the reflection layer, but
it is not totally removed in the background layer. Adjust the smoothness weight might
be a solution to this kind of problem.

Method II. Motion Approach

 This method is based on the following paper:

XUE, Tianfan, et al. A computational approach for obstruction-free photography. ACM
Transactions on Graphics (TOG), 2015, 34.4: 1-11.

Formulation

 In this method, the user should take a short image sequence rather than a single image.
Because the background and the reflected object have different distance to the camera, we can
separate them by analyzing the relative motion in the image sequence.
 Due to the additional information of “motion”, we modify the problem definition here:

 is the image at frame t.
 denotes the motion field for the background layer from reference frame to the frame

. Similarly, is the motion field for the reflected-object layer.
 is a warping matrix such that is the warping background

component according to the motion field

 The goal is to recover the background layer and the reflected-object image for the
reference frame , from an input image sequence without knowing the motion fields
and .

 We define an optimization problem with the objective function:

Algorithm

 The algorithm consists of two steps, initialization and iterative optimization.

initialization:

1. Edge map
First, extract the edge map for each frame using the Canny edge detector.

2. Sparse motion field
Calculate the motion vectors on extracted edge pixels by solving a discrete Markov random
field.

No. 6 / 17

af://n8563
https://people.csail.mit.edu/mrub/papers/ObstructionFreePhotography_SIGGRAPH2015.pdf
af://n8568
af://n8581

 and are two neighboring input images, is the motion field from image to that
we want to estimate, is the set of edge pixels in image , and is the 4-
connected pixel neighborhood.
The first term with the normalized cross correlation (NCC) between these two patches
describes how well the patch located at position x in image matches the patch located at

 in image . The second term is the smoothness term that enforces neighboring
edge pixels to have similar motion.

3. Classification
After obtaining sparse motion field ,one should separate it into two layers by fitting two
perspective transforms to the edge motion and assign each pixel to either the background
layer or the object-reflected layer using RANSAC.

4. Dense motion field
Compute the dense motion fields for both layers of sparse motion fields using visual surface
interpolation.

5. warping to get initial decomposition

First warp all the frames to the reference frame according to the background motion. We
take the initial estimation of the background image to be the minimum intensity across the
warped frames. (Because when warping according to the background, the background
pattern should be roughly-aligned, while the reflected-object is moving.)

optimization

1. Use an alternating gradient descent method to solve the objective function. That is,
alternate between the decomposition and motion estimation until convergence.
Decomposition step: fix motion fields and , solve for and

Motion estimation step: fix and ,solve for the motion fields and .

2. Pseudo code:

 Implementation
 To implement the above algorithm, I have modified some of the algorithm. Below are the step-
by-step introduction of my implementation

1. Input sequence:
Below 6 frames are the continuous sequence images taken through the window by a person
wearing plaid shirt. One can see the reflected image of plaid shirt and outside scenery.

No. 7 / 17

 Our goal is to remove the reflected image.

opencv canny edge my canny edge implementation

2. Edge map
Below are the results from cv2.Canny() and my canny edge detection implementation from
hw2.

 I found that OpenCV's performance is much better than mine, which have lot of
uncontinuous segments. However, this step is fundamental because all the following steps
depend on the information of edge map. Therefore, I get rid of my own implementaiton and
choose the OpenCV's.

3. Extract sparse motion field
Instead of using the original solution of solving Markov random field, I use “Lucas-Kanade
Optical Flow algorithm” to calculate the motion field.

 The Lucas–Kanade method assumes that the displacement of the image contents between
two nearby image frames is small and approximately constant within a neighborhood of the
point p. Thus, the optical flow equation can be assumed to hold for all pixels within a
window(assume) centered at p. Namely, the local image flow (velocity) vector
must satisfy:

 are the pixels inside the window

is the partial derivatives of the image I with respect to position x

is the partial derivatives of the image I with respect to position y

is the partial derivatives of the image I with respect to time t (frame)

Write the equations in matrix form , we have:

No. 8 / 17

We should solve the equation by least squares approximation.
We know that is equivalent to solving . That is,

.

To obtain , I use the pixel domain convolution by ,

, and

I draw some vector to visualize result of this step and choose the best window size. It seemed to
work well at window_size = image_size * 0.01. Below are a clip from the result. However, at the
edge of the image, some pixels are out of the image boundary at next frame, causing the error in
calculation. But this is o.k. because step 6 of warping will eliminate those vector automatically for
out of boundary mapping.

4. Classfication

In this step, we should separate sparse motion field V into two layers. In the original solution
in the paper, we should do this by fitting two perspective transforms to the edge motion and
assign each pixel to either the background layer or the object-reflected layer using RANSAC.
However, instead of writing a RANSAC model, I take advantage of OpenCV library function
call cv2.findHomography(srcPoints=source_points, dstPoints=target_points,
method=cv2.RANSAC, ransacReprojThreshold=0.1) to meet the requirement.

The function finds and returns the perspective transformation H between the source and the

destination planes:

So that the back-projection error

No. 9 / 17

is minimized.

If not all of the point pairs () fit the rigid perspective transformation
(that is, there are some outliers), this initial estimate will be poor. Therefore, the function use
some methods (RANSAC, LmeDS or RHO) to try many different random subsets of the
corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the
homography matrix using this subset and a simple least-squares algorithm, and then
compute the quality of the computed homography (which is the number of inliers for
RANSAC). The best subset is then used to produce the initial estimate of the homography
matrix and the mask of inliers/outliers.

To use cv2.findHomography() to separate background motion field and reflection motion
field, I treat the points in edge map as first planes, the new points moved according to their
corresponding motion vectors as the second planes. The function will find the perspective
transformation between two points and use RANSAC to consider only inlier points. The
output will not only gives the transformation matrix, but also a mask to tell which of those
points are inliers. By the mask, I can separate the original points into inlier points and outlier
points.

To separate the original sparse motion points into background motion points and reflection
motion points, I call the function twice:

(1) input the original motion points, treat the output inlier points as background motion
points. (I assume that background motion is the more dominant.)
(2) input the oulier points from the output of the first call, treat the output inlier points
as reflection motion points.

Below is a visulization of the seperation of motion field.
Red points stand for background; Green points stand for reflection.

 One can observe that most of the background points and reflection points were separeted
successfully. However, some points weren't seperated very well at the region that
background feature and reflection feature overlapping. I think this is due to the assumption
of identical velocity in the small windows in calculation of Lucas-Kanada optical flow.

5. Dense motion field

To get the dense flow fields from sparse edge flows for both background and reflection
motion, I use scipy.interpolate.griddata() to interpolate for both y-axis motion vector
and x-axis motion vector.
Below is the visualization of the result. I plot the motion direction with color and motion
magnitude as brightness.

No. 10 / 17

One can observe that the major difference in the two visualized result are the motion
direction.

6. Warping

Warping to the reference frame using the dense flow field. We take the initial estimation of
the background image to be the minimum intensity across the warped frames.

7. Result

 The reflected image and background image are seperated well, except some contour of the
house. Maybe this can be optimized by solving objective function using gradient descent method.
However, I eliminate that step in my term project due to its difficulty of implementation.

 Test sample and the result:

No. 11 / 17

Input
Output background /
reflection

comment

source: the author

background

reflection

The result is
good because
the black-white
plaid shirt acts
as a good edge
information.

source: 20210504 at multi-purpose
classroom building

background

reflection

Most of the light
outside of the
windows are
classified
correctly.
However,
because the
unfocused
reflection image
is too blurred to
act correctly as
an edge.
Therefore, some
pixel near the
arm isn't
classified
correctly.

No. 12 / 17

Input
Output background /
reflection

comment

source: 20210605 outside of my
house

background

reflection

The result isn't
very well
because the
movement of
sequence is too
subtle to cover
every
"background
pixel" that is
blocked by the
lightbulb. (the
lightbulb
becomes
"thinner" but
not disappear in
the background
image, which is
limited to the
small
movement.) The
pixels inside of
the lightbulb
isn't classified
correctly as well
because that
area lack of
edges
information

Method III. User-assisted Separation of Reflections with
Sparse Prior

 This is based on the following two papers:

One was published in the European Conference on Computer Vision (ECCV), May 2004.
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior.
The codes, images and some supplementary files that I implemented was modified from the
enclosure of this paper. In the following this version is referred to as ECCV2004.
The author published another version with similar content was published in IEEE Trans.
Pattern Analysis and Machine Intelligence, Sep 2007.
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior.
Unfortunately there is no enclosure package with this paper. In the following this version is
referred to as IEEE2007.

 These two papers and packages can be derived from the author's home page: Anat Levin.

No. 13 / 17

af://n8697
https://webee.technion.ac.il/people/anat.levin/papers/assisted-eccv04.pdf
https://webee.technion.ac.il/people/anat.levin/papers/Assisted-Reflections-Levin-Weiss-PAMI.pdf
https://webee.technion.ac.il/people/anat.levin/

Algorithm

 The method is based on the fact that the gradient of a natural image is sparse, in the sense that
the distribution peak at zero and have heavy tails, so we can model the distribution by some
sparse prior. In the following we will use the sum of two Laplace distribtions to do this.
 Assume we are given an input image with two sets of image locations , , such that the
gradients in location belong to one layer and gradients in location belong to the other
layer. We then wish to find the two layers , such that:

1. Sum of two layers form the input image .
2. Gradients of at locations in agree with the gradients of , and similalrly the gradients

of at locations in agree with the gradients of .

 We assume the reflection and the background are independent , and derivatives of all pixels are
independent. Under these constraints, we aim to maximize to probability of the layers:

 where is the convolution of the k’th filter with image centered at pixel , and the filters
include the first and second order derivatives, as its selection is of our interests.
 As mentioned, we use the assumption of the sparse prior, mixture of Laplacian distribution, and
take logarithm to approximate by

 Note that the probability function is a mixture of density function of Laplacian
distributions. The parameters are set to be , which are
learned to perform well in experiments.
 This is equivalent to minimize the function

 constrained by the above two requirements.
 To solve this, turn and write it into an unconstrained minimization; that is, we hope
to find the layer that minimizes the cost

 For simplicity we can write this into the form

 where is the jth row of the matrix corresponding to all filters we use, is the vector of
image written in one-dimension, and is some one-dimension vector representing the
deriviatives.

No. 14 / 17

af://n8705

 The papers ECCV2004 and IEEE2007 have their main content almost the same. The significant
difference is that they use different ways to minimize the cost. ECCV2004 uses the method of
Expectation-maximization(EM) to solve the linear programming problem, while IEEE2007 uses the
method of Iterative reweighted least squares optimization(IRLS).

Expectation-maximization(EM)

 This is done by iteratively find expectation (E-step) and perform minimization(M-step)

E-step: Calculate two weights for each jth row of such that

 The proportion constant is set to make .

M-step: Perform minimization by assigning

where is the diagonal matrix with elements

 Iteratively perform E-step and M-step should minimize the cost function. In ECCV2004 the author
suggest about 15 iterations.

Iterative reweighted least squares optimization(IRLS)

 The IRLS algorithm proceeds as below:

Initialization: Set initial state where is indexed from 1 to size of image.

Repeat:

1. Let and . Let to be the solution of .

2. Set , and . Recall that

. Compute its derivative and plug in; that is

 The number of repeat times is fixed to 10 that is suggested by IEEE2007.

Experiment result

 As mentioned above, the method of EM fail to separate the reflection. It outputs a black image
and the original image. This result is derived from the given MATLAB code of the author, and the
python code I which imitate from the package show the same output.

 On the otherhand, the method of IRLS requires very large overhead of memory; e.g.
will crash on CSIE Work Station. To test this I made a test image with size .

No. 15 / 17

af://n8724
af://n8738
af://n8752

test image test image with edge

test image test image with edge

 As above shows, the left is our test image, which is composed of two squares with different
intensities. The right image was adds the edges we mark; while the red represents the edges in
reflection and the blue represents the that in the real image.

 By performing IRLS method with 10 iterations, the following shows the middle 9 iteration results.

 And the eventual result is shown below.

No. 16 / 17

 We see the program can separate the reflection to some extent. It is worthy to note that the
program seem not to converge as iteration time increases; as a result, this method is not really
friendly.

Conclusion

Method I. Smoothness Approach

 The first method applys to single static image. It provides good results with fast convergence
and efficient computation. Performance is good while the desired layer is in focused and
background is simple, on the contrary, photo with complicated background or out of focus should
be improved.

Method II. Motion Approach

 The second method takes advantage of the slight movement in an image sequence, so user
needs to take several images in a sequence. Recently, many smartphones are equipped with
continuous capture modes, so it isn't a problem. However, the method might fail when number of
frames are too small or the image contains few edges or with many noise. Most of the time, it
performs well in general condition.

Method III. User-assisted Separation of Reflections with
Sparse Prior

 The third method requires the user to mark certain edges for the reflection layer and the
background layer. It fails when number of marked edges is not big enough, and it causes a lot of
memory overhead. To sum all, this method can do some work to some certain extent, but in most
cases it is not very suitable to use this method.

Reference
1. Y. Li and M. S. Brown, "Single Image Layer Separation Using Relative Smoothness," 2014 IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 2752-2759, doi:
10.1109/CVPR.2014.346.

2. XUE, Tianfan, et al. A computational approach for obstruction-free photography. ACM
Transactions on Graphics (TOG), 2015, 34.4: 1-11.

3. LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single image using a
sparsity prior. In: European Conference on Computer Vision. Springer, Berlin, Heidelberg,
2004. p. 602-613.

4. LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single image using a
sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29.9:
1647-1654.

No. 17 / 17

af://n8776
af://n8777
af://n8779
af://n8781
af://n8783

	Reflection Removal
	Motivation
	Problem Definition
	Algorithm and Experiment result
	Method I. Smoothness Approach
	Formulation
	Algorithm
	Step 1
	Step 2
	Step 3
	Step 4
	Output

	Result

	Method II. Motion Approach
	Formulation
	Algorithm

	Method III. User-assisted Separation of Reflections with Sparse Prior
	Algorithm
	Expectation-maximization(EM)
	Iterative reweighted least squares optimization(IRLS)
	Experiment result

	Conclusion
	Method I. Smoothness Approach
	Method II. Motion Approach
	Method III. User-assisted Separation of Reflections with Sparse Prior

	Reference

