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Motivation  
   Reflection produced by glass windows is a bothering issue for photographers. Sometimes we 
only want to keep the scene behind or in front of the window, but the glass window produce a 
reflection of unimportant things, which is called undesired reflections. Reflection removal is a 
solved problem in the past research. In this report, we implemented and discussed three 
approaches according to three papers.

Problem Definition  
   The figure shows the image formation model, in which the camera is taking a picture through 
the glass. The resulting image  will contain two layers, one is the reflected object, denoted 
by , the other is the background scene, denoted by . Our goal is to remove the 
reflected object part in the image.
   Therefore, we have:

   We can remove the reflected object if we get  and  seperatedly.

   

Algorithm and Experiment result  
   

Method I. Smoothness Approach  

   This method is based on the following paper:

Y. Li and M. S. Brown, "Single Image Layer Separation Using Relative Smoothness," 2014 IEEE 
Conference on Computer Vision and Pattern Recognition, 2014, pp. 2752-2759, doi: 
10.1109/CVPR.2014.346.
Paper and source code is accessed on author's website. 

Formulation  

   An image with reflection can be expressed as

    is the input image, 、  is two seperated layer,  is the Reflection layer and  is the 
Background layer. Assume that desired layer is more in focus than the reflection layer, which is 
blurred, so  is convolved with a Gaussian filter h.
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   This paper build a model based on supposing  is smoother than  and therefore large 
gradients are more likely to belong to .On the other hand,  represents the blurred reflection 
layer. To recognize smooth and sharp pattern, we use three derivative filter 

   ,  extract large gradient in image, and  is a Laplacian kernel, which can find smoother 
parts.  and  is obtained by maximining the convolution  and . This 
method could get good results in 3~5 iterations.

   

Algorithm  

   

Symbol Marks : Subscript or  represents the pixel grid index. Superscript or  represents the 
filter index.

Step 1  

   Current  is convolved with filter  and  individually. An auxiliary variabes  is used here. 
Each pixel convolution value would be saved into  if the value exceeds the threshold , 

otherwise  is set to 0.

   The purpose of this step is to find sharp components in the image.

Step 2  

   Calculate new  from current . Based on the cost function of maximizing Convolution is:
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   Rewrite the above cost function and apply 2D FFT,  is calculted by the following formula:

   In this formula, only  is not constant. Thus, Except  is calculated each iteration, other 2D 
FFT is done at the initialization step.

   The numerator in the last formula means superposition of Original image  and Sharper Layer 
obtained by . The weight is controlled by smoothness weight , this value suggested by author is 
50.  is a small number(1e-6) to avoid devide by zero.

Step 3  

   Normalization of  makes sure that each pixel value is in the range [0, 255] (or stricter ). 
After FFT & IFFT at step 2,  values might be amplified. Without normaliztion, different color 
channel might perform different shift, and output figure color would be strange. Object function:

   、  is indicative function. 、  is equal to 1 if x < 0, otherwise 
、 . Pixel values is bounded by 

   Each color channel is normalized seperatedly. To implement this objective function, variable  is 
added to all pixels, which means a linear shift. Solve the objective function with gradient descent 
to find . 

   Iteration stops if  is small enough or exceed 500 iterations. Ater linear  shift, if there is any 
pixel value still out of the bound, The pixel values is clipped to  or 

Step 4  

    increased every iteration to make method converge faster.  and  are both decided by 
user. Paper suggestion is , .

Output  

   Reflection layer  is obtained by original input image  minus . Because both seperatered 
layer values are smaller than original one, intensify layers by multiply a value such that maximum 
in both layer are .
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  Original Backgroud Reflection

1

2

3

4

Result  

Discussion

1. Sample0.jpg : (Image from paper.) This Input image has obvious reflection of aisle. 
Most of the white walls are removed. Some yellow light is left, perhaps the yellow is 
siginificant, thus cannot remove it totally.

2. Sample1.jpg : (Our photo.) Reflection in front of the door is removed and a little outline 
is left. Reflection in front of the bookshelves is not well recognized in reflection layer. 
Complicated background might be an issue to deal with.

3. Sample2.jpg : (Our photo.) In this photo, undesired reflection is the desks and chairs in 
front of the blue background. However, the reflection layer is composed of Clouds and 
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building. Take a close look at this photo, the problem is that the photo is out of focus, so 
most of the components are blurred. Here bring up a problem : Smoothness approach 
method assume that reflection is blurred, this method can only apply to the photo is 
well focused. In addition, Clouds are flattened.

4. Sample3.jpg : (Our photo.) Tree reflection is well recognized in the reflection layer, but 
it is not totally removed in the background layer. Adjust the smoothness weight  might 
be a solution to this kind of problem.

   

   

Method II. Motion Approach  

   This method is based on the following paper: 

XUE, Tianfan, et al. A computational approach for obstruction-free photography. ACM 
Transactions on Graphics (TOG), 2015, 34.4: 1-11.

Formulation  

   In this method, the user should take a short image sequence rather than a single image. 
Because the background and the reflected object have different distance to the camera, we can 
separate them by analyzing the relative motion in the image sequence.
   Due to the additional information of “motion”, we modify the problem definition here:
   

 is the image at frame t.
 denotes the motion field for the background layer from reference frame  to the frame 

. Similarly,  is the motion field for the reflected-object layer.
 is a warping matrix such that  is the warping background 

component  according to the motion field 

   The goal is to recover the background layer  and the reflected-object image  for the 
reference frame , from an input image sequence  without knowing the motion fields  
and .

   We define an optimization problem with the objective function:

Algorithm  

   The algorithm consists of two steps, initialization and iterative optimization.

initialization:

1. Edge map
First, extract the edge map for each frame using the Canny edge detector.

2. Sparse motion field
Calculate the motion vectors on extracted edge pixels by solving a discrete Markov random 
field.
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 and  are two neighboring input images,  is the motion field from image  to  that 
we want to estimate,  is the set of edge pixels in image , and  is the 4-
connected pixel neighborhood.
The first term with the normalized cross correlation (NCC) between these two patches 
describes how well the patch located at position x in image  matches the patch located at 

 in image . The second term is the smoothness term that enforces neighboring 
edge pixels to have similar motion.

3. Classification
After obtaining sparse motion field  ,one should separate it into two layers by fitting two 
perspective transforms to the edge motion and assign each pixel to either the background 
layer or the object-reflected layer using RANSAC.

4. Dense motion field
Compute the dense motion fields for both layers of sparse motion fields using visual surface 
interpolation.

5. warping to get initial decomposition

First warp all the frames to the reference frame according to the background motion. We 
take the initial estimation of the background image to be the minimum intensity across the 
warped frames. (Because when warping according to the background, the background 
pattern should be roughly-aligned, while the reflected-object is moving.)

optimization

1. Use an alternating gradient descent method to solve the objective function. That is, 
alternate between the decomposition and motion estimation until convergence.
Decomposition step: fix motion fields  and  , solve for  and 

Motion estimation step: fix  and ,solve for the motion fields  and .

2. Pseudo code:

   Implementation
   To implement the above algorithm, I have modified some of the algorithm. Below are the step-
by-step introduction of my implementation

1. Input sequence:
Below 6 frames are the continuous sequence images taken through the window by a person 
wearing plaid shirt. One can see the reflected image of plaid shirt and outside scenery.
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 Our goal is to remove the reflected image.

opencv canny edge my canny edge implementation

2. Edge map
Below are the results from cv2.Canny()  and my canny edge detection implementation from 
hw2. 

 I found that OpenCV's performance is much better than mine, which have lot of 
uncontinuous segments. However, this step is fundamental because all the following steps 
depend on the information of edge map. Therefore, I get rid of my own implementaiton and 
choose the OpenCV's.

3. Extract sparse motion field
Instead of using the original solution of solving Markov random field, I use “Lucas-Kanade 
Optical Flow algorithm” to calculate the motion field.

 The Lucas–Kanade method assumes that the displacement of the image contents between 
two nearby image frames is small and approximately constant within a neighborhood of the 
point p. Thus, the optical flow equation can be assumed to hold for all pixels within a 
window(assume ) centered at p. Namely, the local image flow (velocity) vector  
must satisfy: 

 are the pixels inside the window

is the partial derivatives of the image I with respect to position x

is the partial derivatives of the image I with respect to position y

is the partial derivatives of the image I with respect to time t (frame)

Write the equations in matrix form , we have:

No. 8 / 17



We should solve the equation by least squares approximation.
We know that  is equivalent to solving . That is, 

.

To obtain , I use the pixel domain convolution by ,  

, and 

     
I draw some vector to visualize result of this step and choose the best window size. It seemed to 
work well at window_size = image_size * 0.01. Below are a clip from the result. However, at the 
edge of the image, some pixels are out of the image boundary at next frame, causing the error in 
calculation. But this is o.k. because step 6 of warping will eliminate those vector automatically for 
out of boundary mapping.
       

4. Classfication

In this step, we should separate sparse motion field V into two layers. In the original solution 
in the paper, we should do this by fitting two perspective transforms to the edge motion and 
assign each pixel to either the background layer or the object-reflected layer using RANSAC. 
However, instead of writing a RANSAC model, I take advantage of OpenCV library function 
call cv2.findHomography(srcPoints=source_points, dstPoints=target_points, 
method=cv2.RANSAC, ransacReprojThreshold=0.1)  to meet the requirement.
  
The function finds and returns the perspective transformation H between the source and the 

destination planes:  

So that the back-projection error 
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is minimized.

If not all of the point pairs ( ) fit the rigid perspective transformation 
(that is, there are some outliers), this initial estimate will be poor. Therefore, the function use 
some methods (RANSAC, LmeDS or RHO) to try many different random subsets of the 
corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the 
homography matrix using this subset and a simple least-squares algorithm, and then 
compute the quality of the computed homography (which is the number of inliers for 
RANSAC). The best subset is then used to produce the initial estimate of the homography 
matrix and the mask of inliers/outliers.

To use cv2.findHomography() to separate background motion field and reflection motion 
field, I treat the points in edge map as first planes, the new points moved according to their 
corresponding motion vectors as the second planes. The function will find the perspective 
transformation between two points and use RANSAC to consider only inlier points. The 
output will not only gives the transformation matrix, but also a mask to tell which of those 
points are inliers. By the mask, I can separate the original points into inlier points and outlier 
points. 

To separate the original sparse motion points into background motion points and reflection 
motion points, I call the function twice: 

(1) input the original motion points, treat the output inlier points as background motion 
points. ( I assume that background motion is the more dominant.) 
(2) input the oulier points from the output of the first call, treat the output inlier points 
as reflection motion points.

Below is a visulization of the seperation of motion field. 
Red points stand for background; Green points stand for reflection.

 One can observe that most of the background points and reflection points were separeted 
successfully. However, some points weren't seperated very well at the region that 
background feature and reflection feature overlapping. I think this is due to the assumption 
of identical velocity in the small windows in calculation of Lucas-Kanada optical flow.

5. Dense motion field

To get the dense flow fields from sparse edge flows for both background and reflection 
motion, I use scipy.interpolate.griddata()  to interpolate for both y-axis motion vector 
and x-axis motion vector.
Below is the visualization of the result. I plot the motion direction with color and motion 
magnitude as brightness. 
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One can observe that the major difference in the two visualized result are the motion 
direction.

6. Warping

Warping to the reference frame using the dense flow field. We take the initial estimation of 
the background image to be the minimum intensity across the warped frames.

7. Result

   

       The reflected image and background image are seperated well, except some contour of the 
house. Maybe this can be optimized by solving objective function using gradient descent method. 
However, I eliminate that step in my term project due to its difficulty of implementation.

   Test sample and the result:
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Input
Output background /
reflection

comment

source: the author

background

reflection

The result is
good because
the black-white
plaid shirt acts
as a good edge
information.

source: 20210504 at multi-purpose
classroom building

background

reflection

Most of the light
outside of the
windows are
classified
correctly.
However,
because the
unfocused
reflection image
is too blurred to
act correctly as
an edge.
Therefore, some
pixel near the
arm isn't
classified
correctly.
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Input
Output background /
reflection

comment

source: 20210605 outside of my
house

background

reflection

The result isn't
very well
because the
movement of
sequence is too
subtle to cover
every
"background
pixel" that is
blocked by the
lightbulb. (the
lightbulb
becomes
"thinner" but
not disappear in
the background
image, which is
limited to the
small
movement.) The
pixels inside of
the lightbulb
isn't classified
correctly as well
because that
area lack of
edges
information

   

   

   

Method III. User-assisted Separation of Reflections with
Sparse Prior

 

   This is based on the following two papers:

One was published in the European Conference on Computer Vision (ECCV), May 2004. 
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior.
The codes, images and some supplementary files that I implemented was modified from the 
enclosure of this paper. In the following this version is referred to as ECCV2004.
The author published another version with similar content was published in IEEE Trans. 
Pattern Analysis and Machine Intelligence, Sep 2007.
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior.
Unfortunately there is no enclosure package with this paper. In the following this version is 
referred to as IEEE2007.

   These two papers and packages can be derived from the author's home page: Anat Levin.
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Algorithm  

   The method is based on the fact that the gradient of a natural image is sparse, in the sense that 
the distribution peak at zero and have heavy tails, so we can model the distribution by some 
sparse prior. In the following we will use the sum of two Laplace distribtions to do this.
   Assume we are given an input image  with two sets of image locations , , such that the 
gradients in location  belong to one layer and gradients in location  belong to the other 
layer. We then wish to find the two layers ,  such that:

1. Sum of two layers form the input image .
2. Gradients of  at locations in  agree with the gradients of , and similalrly the gradients 

of  at locations in  agree with the gradients of .

   We assume the reflection and the background are independent , and derivatives of all pixels are 
independent. Under these constraints, we aim to maximize to probability of the layers:

   where  is the convolution of the k’th filter with image  centered at pixel , and the filters 
include the first and second order derivatives, as its selection is of our interests.
   As mentioned, we use the assumption of the sparse prior, mixture of Laplacian distribution, and 
take logarithm to approximate  by

   Note that the probability function  is a mixture of density function of Laplacian 
distributions. The parameters are set to be , which are 
learned  to perform well in experiments.
   This is equivalent to minimize the function

   constrained by the above two requirements.
   To solve this, turn  and write it into an unconstrained minimization; that is, we hope 
to find the layer  that minimizes the cost

   For simplicity we can write this into the form

   where  is the jth row of the matrix  corresponding to all filters  we use,  is the vector of 
image  written in one-dimension, and  is some one-dimension vector representing the 
deriviatives.
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   The papers ECCV2004 and IEEE2007 have their main content almost the same. The significant 
difference is that they use different ways to minimize the cost. ECCV2004 uses the method of 
Expectation-maximization(EM) to solve the linear programming problem, while IEEE2007 uses the 
method of Iterative reweighted least squares optimization(IRLS).

Expectation-maximization(EM)  

   This is done by iteratively find expectation (E-step) and perform minimization(M-step)

E-step: Calculate two weights  for each jth row of  such that

   The proportion constant is set to make .

M-step: Perform minimization by assigning

where  is the diagonal matrix with elements 

   Iteratively perform E-step and M-step should minimize the cost function. In ECCV2004 the author 
suggest about 15 iterations.

Iterative reweighted least squares optimization(IRLS)  

   The IRLS algorithm proceeds as below:

Initialization: Set initial state  where  is indexed from 1 to size of image.

Repeat:

1. Let  and . Let  to be the solution of .

2. Set , and . Recall that 

. Compute its derivative and plug in; that is

   The number of repeat times is fixed to 10 that is suggested by IEEE2007.

Experiment result  

   As mentioned above, the method of EM fail to separate the reflection. It outputs a black image 
and the original image. This result is derived from the given MATLAB code of the author, and the 
python code I which imitate from the package show the same output.

   On the otherhand, the method of IRLS requires very large overhead of memory; e.g.  
will crash on CSIE Work Station. To test this I made a test image with size .
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test image test image with edge

test image test image with edge

   As above shows, the left is our test image, which is composed of two squares with different 
intensities. The right image was adds the edges we mark; while the red represents the edges in 
reflection and the blue represents the that in the real image.

   By performing IRLS method with 10 iterations, the following shows the middle 9 iteration results.

   

   And the eventual result is shown below.
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   We see the program can separate the reflection to some extent. It is worthy to note that the 
program seem not to converge as iteration time increases; as a result, this method is not really 
friendly.

Conclusion  

Method I. Smoothness Approach  

   The first method applys to single static image. It provides good results with fast convergence 
and efficient computation. Performance is good while the desired layer is in focused and 
background is simple, on the contrary, photo with complicated background or out of focus should 
be improved.

Method II. Motion Approach  

   The second method takes advantage of the slight movement in an image sequence, so user 
needs to take several images in a  sequence. Recently, many smartphones are equipped with 
continuous capture modes, so it isn't a problem. However, the method might fail when number of 
frames are too small or the image contains few edges or with many noise. Most of the time, it 
performs well in general condition.

Method III. User-assisted Separation of Reflections with
Sparse Prior

 

   The third method requires the user to mark certain edges for the reflection layer and the 
background layer. It fails when number of marked edges is not big enough, and it causes a lot of 
memory overhead. To sum all, this method can do some work to some certain extent, but in most 
cases it is not very suitable to use this method.

Reference  
1. Y. Li and M. S. Brown, "Single Image Layer Separation Using Relative Smoothness," 2014 IEEE 

Conference on Computer Vision and Pattern Recognition, 2014, pp. 2752-2759, doi: 
10.1109/CVPR.2014.346.

2. XUE, Tianfan, et al. A computational approach for obstruction-free photography. ACM 
Transactions on Graphics (TOG), 2015, 34.4: 1-11.

3. LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single image using a 
sparsity prior. In: European Conference on Computer Vision. Springer, Berlin, Heidelberg, 
2004. p. 602-613.

4. LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single image using a 
sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29.9: 
1647-1654.

No. 17 / 17

af://n8776
af://n8777
af://n8779
af://n8781
af://n8783

	Reflection Removal
	Motivation
	Problem Definition
	Algorithm and Experiment result
	Method I. Smoothness Approach
	Formulation
	Algorithm
	Step 1 
	Step 2 
	Step 3
	Step 4
	Output

	Result

	Method II. Motion Approach
	Formulation 
	Algorithm

	Method III. User-assisted Separation of Reflections with Sparse Prior
	Algorithm
	Expectation-maximization(EM)
	Iterative reweighted least squares optimization(IRLS)
	Experiment result


	Conclusion
	Method I. Smoothness Approach
	Method II. Motion Approach
	Method III. User-assisted Separation of Reflections with Sparse Prior

	Reference


