
Reflection Removal
TEAM 11

B07209038 大氣三 邱曼甯

B07502165 機械三 賴昭蓉

B07902063 資工三 陳耕宇

1 0 9 - 2 D I P T E R M P R O J E C T P R O P O S A L

Outline

Motivation

Problem definition

Algorithm

Expected results

Reference

Motivation

Reflection produced by glass windows is a

bothering issue for photographers. Sometimes

we only want the scene behind the window or

object in front of the window.

We want to implement the Reflection removal

method to get rid of undesired reflections.

Problem
Definition

The figure shows the image

formation model, in which the

camera is taking a picture

through the glass. The resulting

image I ∈ 𝑅𝑛 will contain two

layers, one is the reflected

object, denoted by 𝐼𝑅 ∈ 𝑅𝑛, the

other is the background scene,

denoted by 𝐼𝐵 ∈ 𝑅𝑛.

4

Problem Definition

Therefore, we have:

𝐼 = 𝐼𝑅 + 𝐼𝐵

Our goal is to remove the reflected object part in the image.

We can remove the reflected object if we get 𝐼𝑅 and 𝐼𝐵 seperatedly.

5

Algorithm

Three papers and three methods

1. Smoothness Approach

• Paper : Single Image Layer Separation Using Relative Smoothness

2. Motion Approach

• Paper : A computational approach for obstruction-free photography.

3. User-assisted Separation with Sparse Prior

• Paper : User assisted separation of reflections from a single image using a
sparsity prior

Smoothness Approach
LI, Yu; BROWN, Michael S. Single image layer separation using relative smoothness. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014. p. 2752-2759.

An image with reflection can be expressed as

𝑰 = 𝑳𝟏 + 𝑳𝟐 = 𝑳𝑩 + 𝑳𝑹 ⊗ h

L1 : sharper component

L2 : smoother component

h : Gaussian kernel

Convolution

Kernel
𝑓1 = −1 1 𝑓2 =

−1
1

𝑓3 =
0 1 0
1 −4 1
0 1 0

Smooth Sharp

1

Objective function

Goal

Find the 𝑳𝟏 and 𝑳𝟐 to satisfy

1. Maximize 𝑳𝟏 ⊗𝒇𝟏 + 𝑳𝟏 ⊗𝒇𝟐

2. Maximize 𝑳𝟐 ⊗𝒇𝟑

min
𝐿1,𝐿2

𝑖,𝑗

𝜌(𝐿1 ∗ 𝑓𝑗)𝑖 + 𝜆𝜌(𝐿2 ∗ 𝑓𝑗)𝑖
2

Algorithm Layer Separation using Relative Smoothness

Input: image 𝐼; smoothness weight 𝜆; initial 𝛽0; iterations

number 𝑖𝑚𝑎𝑥; increasing rate 𝜂

Initialization: 𝐿1 ← 𝐼; 𝛽 ← 𝛽0; 𝑖 ← 0

while 𝑖 < 𝑖𝑚𝑎𝑥 do

upgrade 𝑔𝑖
𝑗

using Eqn. 7

compute 𝐿1 using Eqn. 8

normalize 𝐿1 using Eqn. 9

𝛽 = 𝜂 ∗ 𝛽

𝑖 ← 𝑖 + 1

end while

𝐿2 = 𝐼 − 𝐿1
Output: The estimation of two layers 𝐿1 and 𝐿2

9

Algorithm Layer Separation using Relative Smoothness

Input: image 𝐼; smoothness weight 𝜆; initial 𝛽0; iterations

number 𝑖𝑚𝑎𝑥; increasing rate 𝜂

Initialization: 𝐿1 ← 𝐼; 𝛽 ← 𝛽0; 𝑖 ← 0

while 𝑖 < 𝑖𝑚𝑎𝑥 do

upgrade 𝑔𝑖
𝑗

using Eqn. 7

compute 𝐿1 using Eqn. 8

normalize 𝐿1 using Eqn. 9

𝛽 = 𝜂 ∗ 𝛽

𝑖 ← 𝑖 + 1

end while

𝐿2 = 𝐼 − 𝐿1
Output: The estimation of two layers 𝐿1 and 𝐿2

Algorithm

Experiment result

= +

Paper test photo (725*480, 6 sec)

Experiment result

=

Our photo (451*602 , 8 sec)

+

Motion Approach

User should take a short image sequence

12

It = W VR
t IR +W VB

t IB

It is the image at frame t

VB
t denotes the motion field for the background layer from reference frame t0 to the frame t. Similarly,

VR
t is the motion field for the reflected-object layer.

W VB
t ∈ Rn×n is a warping matrix such that W VB

t IB is the warping background component IB

according to the motion field VB
t

XUE, Tianfan, et al. A computational approach for obstruction-free photography. ACM Transactions on Graphics
(TOG), 2015, 34.4: 1-11.

2

User should take a short image sequence

13

It = W VR
t IR +W VB

t IB

The goal is to recover the background layer IB and the reflected-object image IR
for the reference frame It0 , from an input image sequence {It} without knowing the

motion fields VR
t and VB

t .

We define an optimization problem with the objective function:

14

𝑚𝑖𝑛

ൟ𝐼𝑅 , 𝐼𝐵 , {𝑉𝑅
𝑡
}, {𝑉𝐵

𝑡

𝑡

|| 𝐼t − W VR
t IR +W VB

t IB ||

1. Edge Map

15

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

6. Optimization

Algorithm
The original algorithm consists of two steps: Initialization and Iterative optimization

1. Initialization

- Edge map: Canny edge detector

- Sparse motion field: Solving the equation

- Classfication: separate sparse motion field V into two layers by fitting two

perspective transforms to the edge motion and assign each pixel to either the

background layer or the object-reflected layer using RANSAC.

𝑚𝑖𝑛
𝑉

𝑥∈𝐸𝑑𝑔𝑒 𝐼1

𝑁𝐶𝐶 𝐼1 𝑥 , 𝐼2 𝑥 + 𝑉 𝑥 +

𝑥,𝑥′∈𝐸𝑑𝑔𝑒 𝐼1 𝑎𝑛𝑑 𝑥,𝑥′ ∈𝑁

𝑆 𝑉 𝑥 , 𝑉 𝑥′

1. Edge Map

16

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

6. Optimization

Algorithm
- Dense motion field: Interpolate dense flow fields from sparse edge flows for both

background and reflection.

- Warping: Warping to the reference frame using the dense flow field. We take

the initial estimation of the background image to be the minimum intensity across

the warped frames.

17

2. Optimization

Use an alternating gradient descent method to solve the objective function.

That is, alternate between the decomposition and motion estimation until

convergence.

Algorithm
1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

6. Optimization

18

Implementation
Input image sequence:

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

19

Implementation
1. Create edge map by canny edge detection

My Canny edge detection implementationopencv Canny edge detection

21

Implementation
2. Extract sparse motion field:

➢ original solution in the paper:

➢ my solution:

use “Lucas-Kanade Optical Flow algorithm” to find motion field.

𝑚𝑖𝑛
𝑉

𝑥∈𝐸𝑑𝑔𝑒 𝐼1

𝑁𝐶𝐶 𝐼1 𝑥 , 𝐼2 𝑥 + 𝑉 𝑥 +

𝑥,𝑥′∈𝐸𝑑𝑔𝑒 𝐼1 𝑎𝑛𝑑 𝑥,𝑥′ ∈𝑁

𝑆 𝑉 𝑥 , 𝑉 𝑥′

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

22

Implementation
Lucas–Kanade method
the local image flow (velocity) vector 𝑢, 𝑣 must satisfy:

𝐼𝑥 𝑝1 𝑢 + 𝐼𝑦 𝑝1 𝑣 = −𝐼𝑡 𝑝1

𝐼𝑥 𝑝2 𝑢 + 𝐼𝑦 𝑝2 𝑣 = −𝐼𝑡 𝑝2

⋮

𝐼𝑥 𝑝25 𝑢 + 𝐼𝑦 𝑝25 𝑣 = −𝐼𝑡 𝑝25

where 𝑝1, 𝑝2, … 𝑝25 are the pixels inside the window,

𝐼𝑥 𝑝𝑖 =
𝜕𝐼

𝜕𝑥
partial derivatives of the image 𝐼 wrt position 𝑥

𝐼𝑦 𝑝𝑖 =
𝜕𝐼

𝜕𝑦
partial derivatives of the image 𝐼 wrt 𝑦

𝐼𝑡 𝑝𝑖 =
𝜕𝐼

𝜕𝑡
partial derivatives of the image 𝐼 wrt 𝑡

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0

u =
𝜕x

𝜕t
v =

𝜕y

𝜕t

23

Implementation
Write the equations in matrix form 𝐴𝑣 = 𝑏

𝐴 =

𝐼𝑥 𝑝1 𝐼𝑦 𝑝1
𝐼𝑥 𝑝2 𝐼𝑦 𝑝2

⋮ ⋮
𝐼𝑥 𝑝25 𝐼𝑦 𝑝25

𝑣 =
u
v

𝑏 =

−𝐼𝑡 𝑝

−𝐼𝑡 𝑝2
⋮

−𝐼𝑡 𝑝25

Solve the equation by least squares approximation

ො𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐴𝑥 − 𝑏
2

equivalent to solving 𝐴⊤𝐴ො𝑥 = 𝐴⊤𝑏

To obtain 𝐼𝑥 𝑝𝑖 , 𝐼𝑦 𝑝𝑖 , 𝐼𝑡 𝑝𝑖 , use pixel domain convolution

𝐼𝑥 𝑝𝑖 =
−1 1
−1 1

⊗ 𝐼𝑡； 𝐼𝑦 𝑝𝑖 =
−1 −1
1 1

⊗ 𝐼𝑡,

𝐼𝑡 𝑝𝑖 =
1 1
1 1

⊗ 𝐼𝑡 −
−1 −1
−1 −1

⊗ 𝐼𝑡−1

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

24

Implementation
3. classfication:

➢ original solution in the paper:

separate sparse motion field V into two layers by fitting two perspective

transforms to the edge motion and assign each pixel to either the background

layer or the object-reflected layer using RANSAC.

➢ my implementation:

use cv2.findHomography() with RANSAC method

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

25

Implementation
➢ Treat the points in edge map as first planes, the new points moved according to

their corresponding motion vectors as the second planes.

➢ To separate the original sparse motion points into background motion points and

reflection motion points, I call cv2.findHomography() twice:

(1) input: the original motion points

get: use the output inlier points as background motion points.

(assume background dominate)

(2) input: the oulier points from the output of the first call

get: output inlier points as reflection motion points.

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

6. Optimization

26

Implementation

Classified sparse motion field
(motion calculate from frame #3-4, red points are background motion,

green points are reflection motion)

27

Implementation
4. Dense motion field

➢ interpolate dense flow fields from sparse edge flows for both background

and reflection motion.

➢ My implementation:

use scipy.interpolate.griddata() to interpolate for both y-axis motion vector

and x-axis motion vector.

dense motion field of reflection dense motion field of background

Motion direction: 0 deg 365 deg

Magnitude: low high

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

28

Implementation
5. Warping

➢ Warping to the reference frame using the dense flow field.

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

29

Implementation

Result:

1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

IR IB

30

Implementation
1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

Other result:

➢ The result is good because the black-white plaid shirt acts as a good edge information.

31

Implementation
1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

➢ Most of the light outside of the windows are classified correctly. However, because

the unfocused reflection image is too blurred to act correctly as an edge. Therefore,

some pixels near the arm aren’t classified correctly.

32

Implementation
1. Edge Map

2. Sparse Motion Field

3. Classification

4. Dense Motion Field

5. Warping

➢ The result isn’t very well because the movement of sequence is too subtle to cover

every “background pixel” that is blocked by the lightbulb.

User-assisted Separation with
Sparse Prior
LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single image using a sparsity prior. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2007, 29.9: 1647-1654.

3

We use the assumption that the user can mark where the edge of the reflection or

the transmitted image is.

User-marked ImageOriginal Image

The method is based on the fact that, the gradient of a natural image is sparse in

the sense that the distribution peak at zero and have heavy tails, so we can model

the distribution by some sparse prior.

Sparse Distribution Non-sparse Distribution

35

Now we state the problem formally.

Assume we are given an input image 𝐼 with two sets of image locations 𝑆𝑅 , 𝑆𝐵, such

that the gradients in location 𝑆𝑅 belong to one layer and gradients in location 𝑆𝐵

belong to the other layer. We then wish to find the two layers 𝐼𝑅 , 𝐼𝐵 such that:

1. Sum of two layers form the input image 𝐼 = 𝐼𝑅 + 𝐼𝐵.

2. Gradients of 𝐼𝑅 at locations in 𝑆𝑅 agree with the gradients of 𝐼, and similarly

the gradients of 𝐼𝐵 at locations in 𝑆𝐵 agree with the gradients of 𝐼.

36

On these constraints, we aim to maximize the probability of the two layers

𝒫 𝐼𝑅, 𝐼𝐵 = 𝒫 𝐼𝑅 𝒫 𝐼𝐵 =ෑ

𝑖,𝑘

𝒫 𝑓𝑖,𝑘 ∙ 𝐼𝑅 ⋅ 𝒫(𝑓𝑖,𝑘 ∙ 𝐼𝐵)

We will use the Laplacian prior to approximate the probability function by

log 𝒫 𝐼 =

𝑖,𝑘

𝜌 𝑓𝑖,𝑘 ∙ 𝐼 𝜌 𝑥 = log(
𝜋1
2𝑠1

𝑒
−
𝑥
𝑠1 +

𝜋2
2𝑠2

𝑒
−
𝑥
𝑠2)

𝑓𝑖,𝑘 ∙ 𝐼 is the convolution of the 𝑘’th filter with image 𝐼 centered at pixel 𝑖.

The filters include the first and second order derivatives, as its selection is of our interests.

37

To sum all, we aim to minimize the cost

𝐽 𝐼𝑅 , 𝐼𝐵 =

𝑖,𝑘

𝜌 𝑓𝑖,𝑘 ⋅ 𝐼𝑅 + 𝜌(𝑓𝑖,𝑘 ⋅ 𝐼𝐵)

One can write it into the form

𝐽 𝑣 =

𝑗

𝜌𝑗(𝐴𝑗𝑣 − 𝑏𝑗)

where 𝑣 is the image vector, 𝐴 has rows that correspond to the filters, and 𝑏 is the

derivatives.

38

We use the method of Iterative reweighted least squares optimization(IRLS) to

approximate the solution.

➢ Initialization: Set initial state 𝜓𝑗
0 = 1 for all 𝑗 indexed from 1 to image size.

➢ Repeat:

1. Let ҧ𝐴 = σ𝑗𝐴𝑗
𝑇𝜓𝑗

𝑡−1𝐴𝑗 and ത𝑏 = σ𝑗 𝐴𝑗
𝑇𝜓𝑗

𝑡−1𝑏𝑗 . Let 𝑥𝑡 be the solution of

ҧ𝐴𝑥 = ത𝑏

2. Set 𝑢𝑗 = 𝐴𝑗𝑥
𝑡 − 𝑏𝑗 , and then 𝜓𝑗

𝑡 𝑢𝑗 =
1

|𝑢𝑗|
𝜌′(𝑢𝑗).

𝜌′(𝑢𝑗)~(
𝜋1

2𝑠1
2 𝑒

−
𝑥
𝑠1 +

𝜋2

2𝑠2
2 𝑒

−
𝑥
𝑠2)/((

𝜋1
2𝑠1

𝑒
−
𝑥
𝑠1 +

𝜋2
2𝑠2

𝑒
−
𝑥
𝑠2)

39

The experimented result made by python code consumes lots of memory overhead.

Regular images, e.g. size 300 × 300, will crash the process.

For a simple test image (size 50 × 50) as below:

Test Image Test Image with

User-assisted edges

40

Fix repeat time to 10 times:

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

Iteration 7 Iteration 8 Iteration 9

41

For 10 times iterations, the program can separate the reflection to some extent.

➢ The program seem not to converge as iteration time increases.

➢ The result takes 7 minutes on CSIE Workstation.

Image 𝐼𝑅 Image 𝐼𝐵

Reference

[1] LI, Yu; BROWN, Michael S. Single image layer separation using relative

smoothness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2014. p. 2752-2759.

[2] XUE, Tianfan, et al. A computational approach for obstruction-free photography.

ACM Transactions on Graphics (TOG), 2015, 34.4: 1-11.

[3] LEVIN, Anat; WEISS, Yair. User assisted separation of reflections from a single

image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2007, 29.9: 1647-1654.

